Skip to main content Skip to search
Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors
MEMSCI Journal of Membrane Science
Format: Journal Article
Publication Date: Nov 30, 2015
Pages: 366 - 375
Sources ID: 105961
Visibility: Public (group default)
Abstract: (Show)
Homopolymer PAN and triblock copolymer PAN-b-PMMA-b-PAN synthesized by RAFT polymerization were used to fabricate activated hierarchical porous carbon membranes by combining phase inversion, carbonization, and HNO3 activation method; during the preparation process, a lot of micro- and meso-pores generated because of phase separation of PAN and microphase separation of PAN-b-PMMA-b-PAN. The hierarchical porous structure shortened ions transport paths and facilitated the rapid migration of electrolyte ions. When the polymer membrane was prepared by the casting solution with 5 wt% of PAN-b-PMMA-b-PAN and the electrochemical performance was tested at the current densities from 0.5 to 5 A g−1, a high-end specific capacitance of 297.0 F g−1 and a capacitance retention of 75% were obtained in three-electrode configuration; this specific capacitance remained above 90% of initial value after 2000 cycles at 2 A g−1 in 6 M KOH aqueous solution. Moreover, symmetric supercapacitors assembled with the prepared materials achieved high energy density (15.8 Wh Kg−1) and power density (4000 W Kg−1) in 1 M Na2SO4 solution. The unique features and structures endowed the electrode membrane with good capacitive performance in both three-electrode and two-electrode configuration, which can be used as electrode membranes for high-performance energy storage devices and other applications.

Display Omitted
• An electrode membrane of activated hierarchical porous carbon was fabricated • Micro- and meso-pores generated due to the phase and microphase separation. • Effects of copolymer concentration on structure and performance were studied • High electrochemical performance for supercapacitor was obtained.