Skip to main content Skip to search
Effect of Cys, GSH, and pH on Mercury Release from Tibetan Medicine Zuotai, β-HgS, and α-HgS in Artificial Gastrointestinal Juices
Biological Trace Element Research
Format: Journal Article
Publication Year: 2018
Pages: 536 - 545
Source ID: shanti-sources-93551
Abstract: Zuotai, also named as "gTso thal", a known Tibetan medicinal mixture containing insoluble cubic crystal mercuric sulfide (β-HgS), has been used to treat diseases with long history. The mercury release ratio from Zuotai in gastrointestinal environment is one determinant factor for its bioavailability and biological effect. However, the information is still scarce now. Therefore, the study was designed to investigate the effect of sulfhydryl biomolecules [L-cysteine (Cys) and glutathione (GSH)] and pH on mercury dissociation from Zuotai, β-HgS, and hexagonal crystal mercuric sulfide (α-HgS) in artificial gastrointestinal juices or pure water with a 1:100 solid-liquid ratio. And, the digestion and peristalsis of gastrointestinal tract were simulated in vitro. The results showed the following trend for the mercury release ratio of Zuotai, artificial gastric juice > artificial intestinal juice > pure water, whereas the trend for β-HgS and α-HgS was as follows, artificial intestinal fluid > artificial gastric fluid > pure water. The mercury release ratios of Zuotai, β-HgS, and α-HgS significantly increased in artificial intestinal juice containing L-Cys or GSH compared to those without sulfhydryl biomolecules in the juice. However, in contrast to the results observed for β-HgS and α-HgS, the mercury release ratio of Zuotai was reduced remarkably in pure water and artificial gastric juice with Cys or GSH. And, we found that strong acidic or strong alkaline environments promoted the dissociation of mercury from Zuotai, β-HgS, and α-HgS. Taken together, current findings may contribute to other studies regarding clinical safety and bioavailability of the traditional drug Zuotai containing β-HgS.