Skip to main content Skip to search
Polyphenol Stilbenes from Fenugreek (Trigonella foenum-graecum L.) Seeds Improve Insulin Sensitivity and Mitochondrial Function in 3T3-L1 Adipocytes
Oxidative Medicine and Cellular Longevity
Format: Journal Article
Publication Year: 2018
Pages: 7634362
Source ID: shanti-sources-95491
Abstract: Fenugreek (Trigonella foenum-graecum L.) is a well-known annual plant that is widely distributed worldwide and has possessed obvious hypoglycemic and hypercholesterolemia characteristics. In our previous study, three polyphenol stilbenes were separated from fenugreek seeds. Here, we investigated the effect of polyphenol stilbenes on adipogenesis and insulin resistance in 3T3-L1 adipocytes. Oil Red O staining and triglyceride assays showed that polyphenol stilbenes differently reduced lipid accumulation by suppressing the expression of adipocyte-specific proteins. In addition, polyphenol stilbenes improved the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) by promoting the phosphorylation of protein kinase B (AKT) and AMP-activated protein kinase (AMPK). In present studies, it was found that polyphenol stilbenes had the ability to scavenge reactive oxygen species (ROS). Results from adenosine triphosphate (ATP) production and mitochondrial membrane potentials suggested that mitochondria play a critical role in insulin resistance and related signaling activation, such as AKT and AMPK. Rhaponticin, one of the stilbenes from fenugreek, had the strongest activity among the three compounds in vitro. Future studies will focus on mitochondrial biogenesis and function.