Skip to main content Skip to search
[Molecular mechanism of Tibetan medicine Rhodiola crenulata prevents oxidative stress through network pharmacology]
Zhongguo Zhong Yao Za Zhi = Zhongguo Zhongyao Zazhi = China Journal of Chinese Materia Medica
Short Title: Zhongguo Zhong Yao Za Zhi
Format: Journal Article
Publication Date: 2018/05//
Pages: 1789 - 1797
Sources ID: 94296
Visibility: Public (group default)
Abstract: (Show)
In this study, a computer-based network pharmacology approach was applied to investigate the potential mechanism and important components of Rhodiola crenulata in the protection of H9c2 cells against hydrogen peroxide (H₂O₂)-induced oxidative stress. The intestinal absorption liquid of R. crenulata enhanced the cell viability, maintained cell morphology and inhibited cell apoptosis in the H₂O₂-induced oxidative stress in H9c2. Then, computer-based network pharmacology was used to analyze the relevant mechanism. A total of 133 oxidative stress-related compounds were screened out; and 26 of them occupied the top 20%, and all of the compounds enriched in 43 oxidative stress-related key targets. Finally, a "compound-target-pathway-function" network was constructed. Based on the analysis of the network pharmacology, R. crenulata protected H9c2 cells against H₂O₂-induced oxidative stress probably by affecting apoptosis-related processes, such as cell death, nitric oxide metabolism, oxidative stress, mitochondrial mechanism, redox process, redox-related enzyme activty and other oxidative stress-related process. And salidroside, ethyl gallate and catechins, which were the main components of R. crenulata, played an important role in this process. Therefore, the potential mechanism and important components of R. crenulata revealed the protective effect on oxidative stress. This study shows a multi-component, multi-target and overall regulation effect of R. crenulata on the oxidative stress, and provides a reliable reference for subsequent systematic experimental studies for the pharmacodynamic material foundation and mechanism of action R. crenulata.