Zotero Collections:
Zotero Collections:
Zotero Collections:
Zotero Collections:
Very little is currently known about the cerebral characteristics that underlie the complex processes of meditation as only a limited number of studies have addressed this topic. Research exploring structural connectivity in meditation practitioners is particularly rare. We thus acquired diffusion tensor imaging (DTI) data of high angular and spatial resolution and used atlas-based tract mapping methods to investigate white matter fiber characteristics in a well-matched sample of long-term meditators and controls (n=54). A broad field mapping approach estimated the fractional anisotropy (FA) for twenty different fiber tracts (i.e., nine tracts in each hemisphere and two inter-hemispheric tracts) that were subsequently used as dependent measures. Results showed pronounced structural connectivity in meditators compared to controls throughout the entire brain within major projection pathways, commissural pathways, and association pathways. The largest group differences were observed within the corticospinal tract, the temporal component of the superior longitudinal fasciculus, and the uncinate fasciculus. While cross-sectional studies represent a good starting point for elucidating possible links between meditation and white matter fiber characteristics, longitudinal studies will be necessary to determine the relative contribution of nature and nurture to enhanced structural connectivity in long-term meditators.
Zotero Collections:
Long-term Vipassana meditators sat in meditation vs. a control (instructed mind wandering) states for 25 min, electroencephalography (EEG) was recorded and condition order counterbalanced. For the last 4 min, a three-stimulus auditory oddball series was presented during both meditation and control periods through headphones and no task imposed. Time-frequency analysis demonstrated that meditation relative to the control condition evinced decreased evoked delta (2–4 Hz) power to distracter stimuli concomitantly with a greater event-related reduction of late (500–900 ms) alpha-1 (8–10 Hz) activity, which indexed altered dynamics of attentional engagement to distracters. Additionally, standard stimuli were associated with increased early event-related alpha phase synchrony (inter-trial coherence) and evoked theta (4–8 Hz) phase synchrony, suggesting enhanced processing of the habituated standard background stimuli. Finally, during meditation, there was a greater differential early-evoked gamma power to the different stimulus classes. Correlation analysis indicated that this effect stemmed from a meditation state-related increase in early distracter-evoked gamma power and phase synchrony specific to longer-term expert practitioners. The findings suggest that Vipassana meditation evokes a brain state of enhanced perceptual clarity and decreased automated reactivity.
Zotero Collections:
<p>Summary Although meditation has been practiced worldwide for centuries, there are no reports that it causes epilepsy or increases the predisposition to it. Medical care utilization statistics and clinical studies indicate that individuals who regularly practice the Transcendental Meditation technique have fewer problems of the nervous system and specifically show decreased symptoms of epilepsy. The frequency, amplitude, areas of activation, and effects of the EEG during the Transcendental Meditation technique are completely different from those of epilepsy. There is no evidence that the Transcendental Meditation technique increases glutamate, which has been associated with epilepsy. With regard to serotonin, the relationship of serotonin to epilepsy has to be viewed in the context of the abnormal brain tissue that causes epilepsy. The serotonin increases that may occur through meditation have been associated with only beneficial effects.</p>
Zotero Collections:
Metacognition refers to any knowledge or cognitive process that monitors or controls cognition. We highlight similarities between metacognitive and executive control functions, and ask how these processes might be implemented in the human brain. A review of brain imaging studies reveals a circuitry of attentional networks involved in these control processes, with its source located in midfrontal areas. These areas are active during conflict resolution, error correction, and emotional regulation. A developmental approach to the organization of the anatomy involved in executive control provides an added perspective on how these mechanisms are influenced by maturation and learning, and how they relate to metacognitive activity.
Zotero Collections:
Many recent behavioral and neuroscientific studies have revealed the importance of investigating meditation states and traits to achieve an increased understanding of cognitive and affective neuroplasticity, attention and self-awareness, as well as for their increasingly recognized clinical relevance. The investigation of states and traits related to meditation has especially pronounced implications for the neuroscience of attention, consciousness, self-awareness, empathy and theory of mind. In this article we present the main features of meditation-based mental training and characterize the current scientific approach to meditation states and traits with special reference to attention and consciousness, in light of the articles contributed to this issue.
Zotero Collections:
Summary
Meditation practice is difficult to access because of its countless forms of appearances originating from the complexity of cultures it has to serve. This makes a suitable categorization for scientific use almost impossible. However, empirical data suggest that different forms of meditation show similar steps of development in terms of their neurophysiological correlates. Some electrophysiological alterations can be observed on the beginner/student level, which are closely related to non-meditative processes. Others seem to correspond to an advanced/expert level, and seem to be unique for meditation-related states of consciousness. Meditation is one possibility to specialize brain/mind functions using the brain’s immanent neural plasticity. This plasticity is probably recruited by certain EEG patterns observed during or as a result of meditation, for instance, synchronized gamma oscillations. While meditation formerly has been understood to comprise mainly passive relaxation states, recent EEG findings suggest that meditation is associated with active states which involve cognitive restructuring and learning.
Zotero Collections:
Zotero Collections:
Zotero Collections:
Zotero Collections:
It is the central hypothesis of this paper that the mental states commonly referred to as altered states of consciousness are principally due to transient prefrontal cortex deregulation. Supportive evidence from psychological and neuroscientific studies of dreaming, endurance running, meditation, daydreaming, hypnosis, and various drug-induced states is presented and integrated. It is proposed that transient hypofrontality is the unifying feature of all altered states and that the phenomenological uniqueness of each state is the result of the differential viability of various frontal circuits. Using an evolutionary approach, consciousness is conceptualized as hierarchically ordered cognitive function. Higher-order structures perform increasingly integrative functions and thus contribute more sophisticated content. Although this implies a holistic approach to consciousness, such a functional hierarchy localizes the most sophisticated layers of consciousness in the zenithal higher-order structure: the prefrontal cortex. The hallmark of altered states of consciousness is the subtle modification of behavioral and cognitive functions that are typically ascribed to the prefrontal cortex. The theoretical framework presented yields a number of testable hypotheses.
Zotero Collections:
Zotero Collections:
Zotero Collections:
<p>With each eye fixation, we experience a richly detailed visual world. Yet recent work on visual integration and change direction reveals that we are surprisingly unaware of the details of our environment from one view to the next: we often do not detect large changes to objects and scenes ('change blindness'). Furthermore, without attention, we may not even perceive objects ('inattentional blindness'). Taken together, these findings suggest that we perceive and remember only those objects and details that receive focused attention. In this paper, we briefly review and discuss evidence for these cognitive forms of 'blindness'. We then present a new study that builds on classic studies of divided visual attention to examine inattentional blindness for complex objects and events in dynamic scenes. Our results suggest that the likelihood of noticing an unexpected object depends on the similarity of that object to other objects in the display and on how difficult the priming monitoring task is. Interestingly, spatial proximity of the critical unattended object to attended locations does not appear to affect detection, suggesting that observers attend to objects and events, not spatial positions. We discuss the implications of these results for visual representations and awareness of our visual environment.</p>
Zotero Collections:
Participants in the dialogue between science and Buddhism have long modeled their discussion primarily on the idea of convergence, the premise that the most significant comparisons are those that reveal common ground. This is by no means the only model for comparative discussion, and I would argue that in the case of Buddhism and science it is deeply flawed. Instead, another model—one based on mutual challenge, in which the two sides are able to shed light on each other precisely because of their differences—offers what I see as a more potentially fruitful alternative.
Zotero Collections:
Participants in the dialogue between science and Buddhism have long modeled their discussion primarily on the idea of convergence, the premise that the most significant comparisons are those that reveal common ground. This is by no means the only model for comparative discussion, and I would argue that in the case of Buddhism and science it is deeply flawed. Instead, another model—one based on mutual challenge, in which the two sides are able to shed light on each other precisely because of their differences—offers what I see as a more potentially fruitful alternative.
Zotero Collections:
Zotero Collections:
Zotero Collections:
Mindfulness meditation has been shown to promote emotional stability. Moreover, during the processing of aversive and self-referential stimuli, mindful awareness is associated with reduced medial prefrontal cortex (MPFC) activity, a central default mode network (DMN) component. However, it remains unclear whether mindfulness practice influences functional connectivity between DMN regions and, if so, whether such impact persists beyond a state of meditation. Consequently, this study examined the effect of extensive mindfulness training on functional connectivity within the DMN during a restful state. Resting-state data were collected from 13 experienced meditators (with over 1000 h of training) and 11 beginner meditators (with no prior experience, trained for 1 week before the study) using functional magnetic resonance imaging (fMRI). Pairwise correlations and partial correlations were computed between DMN seed regions’ time courses and were compared between groups utilizing a Bayesian sampling scheme. Relative to beginners, experienced meditators had weaker functional connectivity between DMN regions involved in self-referential processing and emotional appraisal. In addition, experienced meditators had increased connectivity between certain DMN regions (e.g. dorso-medial PFC and right inferior parietal lobule), compared to beginner meditators. These findings suggest that meditation training leads to functional connectivity changes between core DMN regions possibly reflecting strengthened present-moment awareness.
Zotero Collections:
There is mounting evidence that mindfulness meditation is beneficial for the treatment of mood and anxiety disorders, yet little is known regarding the neural mechanisms through which mindfulness modulates emotional responses. Thus, a central objective of this functional magnetic resonance imaging study was to investigate the effects of mindfulness on the neural responses to emotionally laden stimuli. Another major goal of this study was to examine the impact of the extent of mindfulness training on the brain mechanisms supporting the processing of emotional stimuli. Twelve experienced (with over 1000 h of practice) and 10 beginner meditators were scanned as they viewed negative, positive, and neutral pictures in a mindful state and a non-mindful state of awareness. Results indicated that the Mindful condition attenuated emotional intensity perceived from pictures, while brain imaging data suggested that this effect was achieved through distinct neural mechanisms for each group of participants. For experienced meditators compared with beginners, mindfulness induced a deactivation of default mode network areas (medial prefrontal and posterior cingulate cortices) across all valence categories and did not influence responses in brain regions involved in emotional reactivity during emotional processing. On the other hand, for beginners relative to experienced meditators, mindfulness induced a down-regulation of the left amygdala during emotional processing. These findings suggest that the long-term practice of mindfulness leads to emotional stability by promoting acceptance of emotional states and enhanced present-moment awareness, rather than by eliciting control over low-level affective cerebral systems from higher-order cortical brain regions. These results have implications for affect-related psychological disorders.
Zotero Collections:
Zotero Collections:
Pages |