Skip to main content Skip to search
Displaying 101 - 125 of 745

Pages

  • Page
  • of 30
The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Zotero Collections:

BACKGROUND: Asymmetric patterns of frontal brain activity and brain corticotropin-releasing hormone (CRH) systems have both been separately implicated in the processing of normal and abnormal emotional responses. Previous studies in rhesus monkeys demonstrated that individuals with extreme right frontal asymmetric brain electrical activity have high levels of trait-like fearful behavior and increased plasma cortisol concentrations. METHODS: In this study we assessed cerebrospinal fluid (CSF) CRH concentrations in monkeys with extreme left and extreme right frontal brain electrical activity. CSF was repeatedly collected at 4, 8, 14, 40, and 52 months of age. RESULTS: Monkeys with extreme right frontal brain activity had increased CSF CRH concentrations at all ages measured. In addition, individual differences in CSF CRH concentrations were stable from 4 to 52 months of age. CONCLUSIONS: These findings suggest that, in primates, the fearful endophenotype is characterized by increased fearful behavior, a specific pattern of frontal electrical activity, increased pituitary-adrenal activity, and increased activity of brain CRH systems. Data from other preclinical studies suggests that the increased brain CRH activity may underlie the behavioral and physiological characteristics of fearful endophenotype.
Zotero Collections:

This study aims at investigating changes in heart rate variability (HRV) measured during meditation. The statistical and spectral measures of HRV from the RR intervals were analyzed. Results indicate that meditation may have different effects on health depending on frequency of the resonant peak that each meditator can achieve. The possible effects may concern resetting baroreflex sensitivity, increasing the parasympathetic tone, and improving efficiency of gas exchange in the lung.
Zotero Collections:

Maltreatment during childhood is a major risk factor for anxiety and depression, which are major public health problems. However, the underlying brain mechanism linking maltreatment and internalizing disorders remains poorly understood. Maltreatment may alter the activation of fear circuitry, but little is known about its impact on the connectivity of this circuitry in adolescence and whether such brain changes actually lead to internalizing symptoms. We examined the associations between experiences of maltreatment during childhood, resting-state functional brain connectivity (rs-FC) of the amygdala and hippocampus, and internalizing symptoms in 64 adolescents participating in a longitudinal community study. Childhood experiences of maltreatment were associated with lower hippocampus–subgenual cingulate rs-FC in both adolescent females and males and lower amygdala–subgenual cingulate rs-FC in females only. Furthermore, rs-FC mediated the association of maltreatment during childhood with adolescent internalizing symptoms. Thus, maltreatment in childhood, even at the lower severity levels found in a community sample, may alter the regulatory capacity of the brain’s fear circuit, leading to increased internalizing symptoms by late adolescence. These findings highlight the importance of fronto–hippocampal connectivity for both sexes in internalizing symptoms following maltreatment in childhood. Furthermore, the impact of maltreatment during childhood on both fronto–amygdala and –hippocampal connectivity in females may help explain their higher risk for internalizing disorders such as anxiety and depression.
Zotero Collections:

Some children show emotion that is not consistent with normative appraisal of the context and can therefore be defined as context inappropriate (CI). The authors used individual growth curve modeling and hierarchical multiple regression analyses to examine whether CI anger predicts differences in hypothalamic-pituitary-adrenal axis activity, as manifest in salivary cortisol measures. About 23% of the 360 children (ages 6-10 years, primarily 7-8) showed at least 1 expression of CI anger in situations designed to elicit positive affect. Expression of anger across 2 positive assessments was less common (around 4%). CI anger predicted the hypothesized lower levels of cortisol beyond that attributed to context appropriate anger. Boys' CI anger predicted lower morning cortisol and flatter slopes. Results suggest that this novel approach to studying children's emotion across varying contexts can provide insight into affective style.
Zotero Collections:

The cholinergic system has consistently been implicated in Pavlovian fear conditioning. Considerable work has been done to localize specific nicotinic receptor subtypes in the hippocampus and determine their functional importance; however, the specific function of many of these subtypes has yet to be determined. An alpha7 nicotinic antagonist methyllycaconitine (MLA) (35 microg), and a broad spectrum non-alpha7 nicotinic antagonist mecamylamine (35 microg) was injected directly into the dorsal hippocampus or overlying cortex either 15 min pre-, 1 min post-, or 6h post-fear conditioning. One week after conditioning, retention of contextual and cue (tone) conditioning were assessed. A significant impairment in retention of contextual fear was observed when mecamylamine was injected 15 min pre- and 1 min post-conditioning. No significant impairment was observed when mecamylamine was injected 6h post-conditioning. Likewise, a significant impairment in retention of contextual fear was observed when MLA was injected 1 min post-conditioning; however, in contrast, MLA did not show any significant impairments when injected 15 min pre-conditioning, but did show a significant impairment when injected 6h post-conditioning. There were no significant impairments observed when either drug was injected into overlying cortex. No significant impairments were observed in cue conditioning for either drug. In general, specific temporal dynamics involved in nicotinic receptor function were found relative to time of receptor dysfunction. The results indicate that the greatest deficits in long-term retention (1 week) of contextual fear are produced by central infusion of MLA minutes to hours post-conditioning or mecamylamine within minutes of conditioning.
Zotero Collections:

Previous research indicates that lower-class individuals experience elevated negative emotions as compared with their upper-class counterparts. We examine how the environments of lower-class individuals can also promote greater compassionate responding-that is, concern for the suffering or well-being of others. In the present research, we investigate class-based differences in dispositional compassion and its activation in situations wherein others are suffering. Across studies, relative to their upper-class counterparts, lower-class individuals reported elevated dispositional compassion (Study 1), as well as greater self-reported compassion during a compassion-inducing video (Study 2) and for another person during a social interaction (Study 3). Lower-class individuals also exhibited heart rate deceleration-a physiological response associated with orienting to the social environment and engaging with others-during the compassion-inducing video (Study 2). We discuss a potential mechanism of class-based influences on compassion, whereby lower-class individuals' are more attuned to others' distress, relative to their upper-class counterparts.
Zotero Collections:

Chaotic conditions are a prevalent and threatening feature of social life. Five studies examined whether social class underlies divergent responses to perceptions of chaos in one's social environments and outcomes. The authors hypothesized that when coping with perceptions of chaos, lower class individuals tend to prioritize community, relative to upper class individuals, who instead tend to prioritize material wealth. Consistent with these predictions, when personally confronting chaos, lower class individuals were more communally oriented (Study 1), more connected with their community (Study 2), and more likely to volunteer for a community-building project (Study 3), compared to upper class individuals. In contrast, perceptions of chaos caused upper class individuals to express greater reliance on wealth (Study 4) and prefer financial gain over membership in a close-knit community (Study 5), relative to lower class individuals. These findings suggest that social class shapes how people respond to perceptions of chaos and cope with its threatening consequences.
Zotero Collections:

<p>Many powerful human emotional thoughts are generated in the absence of a precipitating event in the environment. Here, we tested whether we can decode the valence of internally driven, self-generated thoughts during task-free rest based on neural similarities with task-related affective mental states. We acquired functional magnetic resonance imaging (fMRI) data while participants generated positive and negative thoughts as part of an attribution task (Session A) and while they reported the occurrence of comparable mental states during task-free rest periods (Session B). With the use of multivariate pattern analyses (MVPA), we identified response patterns in the medial orbitofrontal cortex (mOFC) that encode the affective content of thoughts that are generated in response to an external experimental cue. Importantly, these task driven response patterns reliably predicted the occurrence of affective thoughts generated during unconstrained rest periods recorded one week apart. This demonstrates that at least certain elements of task-cued and task-free affective experiences rely on a common neural code. Furthermore, our findings reveal the role that the mOFC plays in determining the affective tone of unconstrained thoughts. More generally, our results suggest that MVPA is an important methodological tool for attempts to understand unguided subject driven mental states such as mind-wandering and daydreaming based on neural similarities with task-based experiences.</p>
Zotero Collections:

First described for use in mapping the human visual cortex in 1991, functional magnetic resonance imaging (fMRI) is based on blood-oxygen level dependent (BOLD) changes in cortical regions that occur during specific tasks. Typically, an overabundance of oxygenated (arterial) blood is supplied during activation of brain areas. Consequently, the venous outflow from the activated areas contains a higher concentration of oxyhemoglobin, which changes the paramagnetic properties of the tissue that can be detected during a T2-star acquisition. fMRI data can be acquired in response to specific tasks or in the resting state. fMRI has been widely applied to studying physiologic and pathophysiologic diseases of the brain. This review will discuss the most common current clinical applications of fMRI as well as emerging directions.
Zotero Collections:

We propose that cognition is more than a collection of independent processes operating in a modular cognitive system. Instead, we propose that cognition emerges from dependencies between all of the basic systems in the brain, including goal management, perception, action, memory, reward, affect, and learning. Furthermore, human cognition reflects its social evolution and context, as well as contributions from a developmental process. After presenting these themes, we illustrate their application to the process of anticipation. Specifically, we propose that anticipations occur extensively across domains (i.e., goal management, perception, action, reward, affect, and learning) in coordinated manners. We also propose that anticipation is central to situated action and to social interaction, and that many of its key features reflect the process of development.
Zotero Collections:

The conceptual system contains categorical knowledge about experience that supports the spectrum of cognitive processes. Cognitive science theories assume that categorical knowledge resides in a modular and amodal semantic memory, whereas neuroscience theories assume that categorical knowledge is grounded in the brain's modal systems for perception, action, and affect. Neuroscience has influenced theories of the conceptual system by stressing principles of neural processing in neural networks and by motivating grounded theories of cognition, which propose that simulations of experience represent knowledge. Cognitive science has influenced theories of the conceptual system by documenting conceptual phenomena and symbolic operations that must be grounded in the brain. Significant progress in understanding the conceptual system is most likely to occur if cognitive and neural approaches achieve successful integration.
Zotero Collections:

Recently, there is a growing interest in meditation as an attentional and emotional regulatory strategy. To examine whether meditative practice is associated with successful emotion regulation, we examined the neurophysiological correlates of cognitive reappraisal in practitioners of a yogic meditative technique and controls. Participants were presented aversive pictures and were asked to cognitively change their appraisal of the affective meaning of the pictures by coming up with an alternative more positive interpretation of each picture. We found reduced magnitude of Event-Related Potentials (P300 and early time intervals of the late positive potential, LPP) following cognitive reappraisal of aversive pictures in both groups. However, in the yogic group, reduced magnitude was sustained during the later intervals of the LPP, while it subsided in the control group. Moreover, reduced amplitude of the late LPP correlated positively with experience of the technique. Results suggest a relation between yogic meditative practice and sustained attenuation of emotional response following emotion regulation. Increased positive affect and familiarity with cognitive emotion regulation in the yogic group may explain this effect. Whether this is a direct causal effect of the practice or can be attributed to characteristics of the participants that preexisted the training needs further examination in a randomized longitudinal study. (PsycINFO Database Record (c) 2012 APA, all rights reserved)

The authors examined the time course of affective responding associated with different affective dimensions--anxious apprehension, anxious arousal, and anhedonic depression--using an emotion-modulated startle paradigm. Participants high on 1 of these 3 dimensions and nonsymptomatic control participants viewed a series of affective pictures with acoustic startle probes presented before, during, and after the stimuli. All groups exhibited startle potentiation during unpleasant pictures and in anticipation of both pleasant and unpleasant pictures. Compared with control participants, symptomatic participants exhibited sustained potentiation following the offset of unpleasant stimuli and a lack of blink attenuation during and following pleasant stimuli. Common and unique patterns of affective responses in the 3 types of mood symptoms are discussed.
Zotero Collections:

Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain's modality-specific systems.
Zotero Collections:

Although accumulating evidence highlights a crucial role of the insular cortex in feelings, empathy and processing uncertainty in the context of decision making, neuroscientific models of affective learning and decision making have mostly focused on structures such as the amygdala and the striatum. Here, we propose a unifying model in which insula cortex supports different levels of representation of current and predictive states allowing for error-based learning of both feeling states and uncertainty. This information is then integrated in a general subjective feeling state which is modulated by individual preferences such as risk aversion and contextual appraisal. Such mechanisms could facilitate affective learning and regulation of body homeostasis, and could also guide decision making in complex and uncertain environments.
Zotero Tags:
Zotero Collections:

The study of emotional communication has focused predominantly on the facial and vocal channels but has ignored the tactile channel. Participants in the current study were allowed to touch an unacquainted partner on the whole body to communicate distinct emotions. Of interest was how accurately the person being touched decoded the intended emotions without seeing the tactile stimulation. The data indicated that anger, fear, disgust, love, gratitude, and sympathy were decoded at greater than chance levels, as well as happiness and sadness, 2 emotions that have not been shown to be communicated by touch to date. Moreover, fine-grained coding documented specific touch behaviors associated with different emotions. The findings are discussed in terms of their contribution to the study of emotion-related communication.
Zotero Collections:

<p>Certain highly emotional experiences have the potential to produce long-lasting and meaningful changes in personality. Two such experiences are spiritual transformations and experiences of profound beauty. However, little is known about the cognitive appraisals or narrative elements involved in such experiences, how they are similar, and how they differ. In a study of emotion-related narratives, these experiences were found to share many features but also differ in their valence. Experiences of profound beauty are almost always positive, but spiritual transformations are both positive and negative. Moreover, spiritual transformations seem to produce long-lasting change, but experiences of profound beauty, although evocative, do not seem to produce long-lasting change. An emotion approach helps to elucidate two understudied but important emotional experiences.</p>
Zotero Collections:

The authors compared 12 pairs of cerebral [18F]-fluoro-deoxyglucose (FDG) 2D/3D image sets from a GE/Advance PET scanner, incorporating the actual corrections used on human subjects. Differences in resolution consistent with other published values were found. There is a significant difference in axial resolution between 2D and 3D, and the authors focused on this as it is a scanner feature that cannot be readily changed. Previously published values for spatial axial resolution in 2D and 3D modes were used to model the differential axial smoothing at each image voxel. This model was applied to the 2D FDG images, and the resulting smoothed data indicate the published differences in axial resolution between 2D and 3D modes can account for 30-40% of the differences between these image sets. The authors then investigated the effect this difference might have on analysis typically performed on human FDG data. A phantom containing spherical hot- and cool-spots in a warm background to mimic a typical human cerebral FDG PET scan was scanned for a variety of time durations (30, 15, 5, 1 min). Only for the 1-minute frame (total counts 2D:6M, 3D:30M) is there an advantage to using 3D mode; for the longer frames which are more typical of a human FDG protocol, the reliability for extracting regions-of-interest is the same for either mode while 2D mode shows better quantitative accuracy
Zotero Collections:

Motion correction of fMRI data is a widely used step prior to data analysis. In this study, a comparison of the motion correction tools provided by several leading fMRI analysis software packages was performed, including AFNI, AIR, BrainVoyager, FSL, and SPM2. Comparisons were performed using data from typical human studies as well as phantom data. The identical reconstruction, preprocessing, and analysis steps were used on every data set, except that motion correction was performed using various configurations from each software package. Each package was studied using default parameters, as well as parameters optimized for speed and accuracy. Forty subjects performed a Go/No-go task (an event-related design that investigates inhibitory motor response) and an N-back task (a block-design paradigm investigating working memory). The human data were analyzed by extracting a set of general linear model (GLM)-derived activation results and comparing the effect of motion correction on thresholded activation cluster size and maximum t value. In addition, a series of simulated phantom data sets were created with known activation locations, magnitudes, and realistic motion. Results from the phantom data indicate that AFNI and SPM2 yield the most accurate motion estimation parameters, while AFNI's interpolation algorithm introduces the least smoothing. AFNI is also the fastest of the packages tested. However, these advantages did not produce noticeably better activation results in motion-corrected data from typical human fMRI experiments. Although differences in performance between packages were apparent in the human data, no single software package produced dramatically better results than the others. The "accurate" parameters showed virtually no improvement in cluster t values compared to the standard parameters. While the "fast" parameters did not result in a substantial increase in speed, they did not degrade the cluster results very much either. The phantom and human data indicate that motion correction can be a valuable step in the data processing chain, yielding improvements of up to 20% in the magnitude and up to 100% in the cluster size of detected activations, but the choice of software package does not substantially affect this improvement.
Zotero Collections:

Pages

  • Page
  • of 30