Skip to main content Skip to search
Displaying 101 - 107 of 107

Pages

  • Page
  • of 5
Planned and reflexive behaviors often occur in the presence of emotional stimuli and within the context of an individual's acute emotional state. Therefore, determining the manner in which emotion and attention interact is an important step toward understanding how we function in the real world. Participants in the current investigation viewed centrally displayed, task-irrelevant, face distractors (angry, neutral, happy) while performing a lateralized go/no-go continuous performance task. Lateralized go targets and no-go lures that did not spatially overlap with the faces were employed to differentially probe processing in the left (LH) and right (RH) cerebral hemispheres. There was a significant interaction between expression and hemisphere, with an overall pattern such that angry distractors were associated with relatively more RH inhibitory errors than neutral or happy distractors and happy distractors with relatively more LH inhibitory errors than angry or neutral distractors. Simple effects analyses confirmed that angry faces differentially interfered with RH relative to LH inhibition and with inhibition in the RH relative to happy faces. A significant three-way interaction further revealed that state anxiety moderated relations between emotional expression and hemisphere. Under conditions of low cognitive load, more intense anxiety was associated with relatively greater RH than LH impairment in the presence of both happy and threatening distractors. By contrast, under high load, only angry distractors produced greater RH than LH interference as a function of anxiety.
Zotero Collections:

Research on temporal-order judgments, reference frames, discrimination tasks, and links to oculomotor control suggest important differences between inhibition of return (IOR) and attentional costs and benefits. Yet, it is generally assumed that IOR is an attentional effect even though there is little supporting evidence. The authors evaluated this assumption by examining how several factors that are known to influence attentional costs and benefits affect the magnitude of IOR: target modality, target intensity, and response mode. Results similar to those previously reported for attention were observed: IOR was greater for visual than for auditory targets, showed an inverse relationship with target intensity, and was equivalent for manual and saccadic responses. Important parallels between IOR and attentional costs and benefits are indicated, suggesting that, like attention, IOR may in part affect sensory-perceptual processes.
Zotero Collections:

The Star Counting Test (SCT) has been developed to measure the regulatory function of attention. In a previous study it was shown that the SCT is suited for assessment of this attentional aspect with children. The present study concerns a more difficult version aimed at young adults. In the literature, the regulatory function of attention is increasingly stressed and it has been linked to working memory functioning. In order to further determine the validity of the SCT, performance was checked against two kinds of measures relating to working memory, i.e. Digit Span and Computational Span. These tasks both call for storage but differ in their claims on the processing component of working memory. Using confirmatory factor analysis substantial correlations were demonstrated with either of these measures. As expected, the correlations tended to rise with increasing demands on the processing component. Test scores were further compared with self-reported cognitive failures. No significant relation appeared to exist. The results are interpreted in terms of demands on the regulatory function of attention.

Pages

  • Page
  • of 5