Displaying 1 - 11 of 11
OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees.
METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine.
RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine.
CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:
Concepts develop for many aspects of experience, including abstract internal states and abstract social activities that do not refer to concrete entities in the world. The current study assessed the hypothesis that, like concrete concepts, distributed neural patterns of relevant nonlinguistic semantic content represent the meanings of abstract concepts. In a novel neuroimaging paradigm, participants processed two abstract concepts (convince, arithmetic) and two concrete concepts (rolling, red) deeply and repeatedly during a concept-scene matching task that grounded each concept in typical contexts. Using a catch trial design, neural activity associated with each concept word was separated from neural activity associated with subsequent visual scenes to assess activations underlying the detailed semantics of each concept. We predicted that brain regions underlying mentalizing and social cognition (e.g., medial prefrontal cortex, superior temporal sulcus) would become active to represent semantic content central to convince, whereas brain regions underlying numerical cognition (e.g., bilateral intraparietal sulcus) would become active to represent semantic content central to arithmetic. The results supported these predictions, suggesting that the meanings of abstract concepts arise from distributed neural systems that represent concept-specific content.
Zotero Collections:
In a recent neuroimaging study of macaque monkeys, Gil-da-Costa and colleagues reported that a distributed circuit of modality-specific properties represents macaques' conceptual knowledge of social situations. The circuit identified shows striking similarities to analogous circuits in humans that represent conceptual knowledge. This parallel suggests that a common architecture underlies the conceptual systems of different species, although with additional systems extending human conceptual abilities significantly.
Zotero Collections:
People believe they see emotion written on the faces of other people. In an instant, simple facial actions are transformed into information about another's emotional state. The present research examined whether a perceiver unknowingly contributes to emotion perception with emotion word knowledge. We present 2 studies that together support a role for emotion concepts in the formation of visual percepts of emotion. As predicted, we found that perceptual priming of emotional faces (e.g., a scowling face) was disrupted when the accessibility of a relevant emotion word (e.g., anger) was temporarily reduced, demonstrating that the exact same face was encoded differently when a word was accessible versus when it was not. The implications of these findings for a linguistically relative view of emotion perception are discussed.
Zotero Collections:
The LASS theory proposes that Language and Situated Simulation both play central roles in conceptual processing. Depending on stimuli and task conditions, different mixtures of language and simulation occur. When a word is processed in a conceptual task, it first activates other linguistic forms, such as word associates. More slowly, the word activates a situated simulation to represent its meaning in neural systems for perception, action, and mental states. An fMRI experiment tested the LASS account. In a first scanning session, participants performed the property generation task to provide a measure of conceptual processing. In a second scanning session a week later, participants performed two localizer tasks measuring word association and situated simulation. Conjunction analyses supported predictions of the LASS theory. Activations early in conceptual processing overlapped with activations for word association. Activations late in conceptual processing overlapped with activations for situation generation. These results, along with others in the literature, indicate that conceptual processing uses multiple representations, not one. Furthermore, researchers must be careful drawing conclusions about conceptual processing, given that different paradigms are likely to produce different mixtures of language and simulation. Whereas some paradigms produce high levels of linguistic processing and low levels of simulation, other paradigms produce the opposite pattern.
Zotero Collections:
The relation between brain activity and the immune system was evaluated by assessing immune responses in 20 healthy women who manifested extreme differences in the asymmetry of frontal cortex activation. One group showed extreme and stable left frontal activation; the other group showed extreme and stable right frontal activation. As predicted, women with extreme right frontal activation had significantly lower levels of natural killer cell activity (at effector:target cell ratios of 33:1 and 11:1) than did left frontally activated individuals. This difference did not extend to two other immune measures, lymphocyte proliferation and T-cell subsets. However, higher immunoglobulin levels of the M class were observed in the right frontal group. In this study, the immune patterns could not be accounted for by plasma cortisol levels, anxiety- and depression-related symptomatology, or recent health histories. These findings support the hypothesis that there is a specific association between frontal brain asymmetry and certain immune responses.
Zotero Collections:
According to the Conceptual Act Theory of Emotion, the situated conceptualization used to construe a situation determines the emotion experienced. A neuroimaging experiment tested two core hypotheses of this theory: (1) different situated conceptualizations produce different forms of the same emotion in different situations, (2) the composition of a situated conceptualization emerges from shared multimodal circuitry distributed across the brain that produces emotional states generally. To test these hypotheses, the situation in which participants experienced an emotion was manipulated. On each trial, participants immersed themselves in a physical danger or social evaluation situation and then experienced fear or anger. According to Hypothesis 1, the brain activations for the same emotion should differ as a function of the preceding situation (after removing activations that arose while constructing the situation). According to Hypothesis 2, the critical activations should reflect conceptual processing relevant to the emotion in the current situation, drawn from shared multimodal circuitry underlying emotion. The results supported these predictions and demonstrated the compositional process that produces situated conceptualizations dynamically.
Zotero Collections:
In three experiments, participants received nouns or noun phrases for objects and verbally generated their properties ("feature listing"). Several sources of evidence indicated that participants constructed perceptual simulations to generate properties for the noun phrases during conceptual combination. First, the production of object properties for noun phrases depended on occlusion, with unoccluded properties being generated more often than occluded properties. Because a perceptual variable affected conceptual combination, perceptual simulations appeared central to combining the concepts for modifiers and head nouns. Second, neutral participants produced the same distributions of properties as participants instructed to describe images, suggesting that the conceptual representations used by neutral participants were similar to the mental images used by imagery participants. Furthermore, the property distributions for neutral and imagery participants differed from those for participants instructed to produce word associations. Third, participants produced large amounts of information about background situations associated with the object cues, suggesting that the simulations used to generate properties were situated. The experiments ruled out alternative explanations that simulation effects occur only for familiar noun phrases associated with perceptual memories and that rules associated with modifiers produce occlusion effects. A process model of the property generation task grounded in simulation mechanisms is presented. The possibility of integrating the simulation account of conceptual combination with traditional accounts and well-established findings is explored.
Zotero Collections:
Work in philosophy and psychology has argued for a dissociation between perceptually-based similarity and higher-level rules in conceptual thought. Although such a dissociation may be justified at times, our goal is to illustrate ways in which conceptual processing is grounded in perception, both for perceptual similarity and abstract rules. We discuss the advantages, power and influences of perceptually-based representations. First, many of the properties associated with amodal symbol systems can be achieved with perceptually-based systems as well (e.g. productivity). Second, relatively raw perceptual representations are powerful because they can implicitly represent properties in an analog fashion. Third, perception naturally provides impressions of overall similarity, exactly the type of similarity useful for establishing many common categories. Fourth, perceptual similarity is not static but becomes tuned over time to conceptual demands. Fifth, the original motivation or basis for sophisticated cognition is often less sophisticated perceptual similarity. Sixth, perceptual simulation occurs even in conceptual tasks that have no explicit perceptual demands. Parallels between perceptual and conceptual processes suggest that many mechanisms typically associated with abstract thought are also present in perception, and that perceptual processes provide useful mechanisms that may be co-opted by abstract thought.
Zotero Collections:
<p>For decades the importance of background situations has been documented across all areas of cognition. Nevertheless, theories of concepts generally ignore background situations, focusing largely on bottom-up, stimulus-based processing. Furthermore, empirical research on concepts typically ignores background situations, not incorporating them into experimental designs. A selective review of relevant literatures demonstrates that concepts are not abstracted out of situations but instead are situated. Background situations constrain conceptual processing in many tasks (e.g., recall, recognition, categorization, lexical decision, color naming, property verification, property generation) across many areas of cognition (e.g., episodic memory, conceptual processing, visual object recognition, language comprehension). A taxonomy of situations is proposed in which grain size, meaningfulness, and tangibility distinguish the cumulative situations that structure cognition hierarchically.</p>
Zotero Collections: