Skip to main content Skip to search
Displaying 176 - 186 of 186

Pages

  • Page
  • of 8
Planned and reflexive behaviors often occur in the presence of emotional stimuli and within the context of an individual's acute emotional state. Therefore, determining the manner in which emotion and attention interact is an important step toward understanding how we function in the real world. Participants in the current investigation viewed centrally displayed, task-irrelevant, face distractors (angry, neutral, happy) while performing a lateralized go/no-go continuous performance task. Lateralized go targets and no-go lures that did not spatially overlap with the faces were employed to differentially probe processing in the left (LH) and right (RH) cerebral hemispheres. There was a significant interaction between expression and hemisphere, with an overall pattern such that angry distractors were associated with relatively more RH inhibitory errors than neutral or happy distractors and happy distractors with relatively more LH inhibitory errors than angry or neutral distractors. Simple effects analyses confirmed that angry faces differentially interfered with RH relative to LH inhibition and with inhibition in the RH relative to happy faces. A significant three-way interaction further revealed that state anxiety moderated relations between emotional expression and hemisphere. Under conditions of low cognitive load, more intense anxiety was associated with relatively greater RH than LH impairment in the presence of both happy and threatening distractors. By contrast, under high load, only angry distractors produced greater RH than LH interference as a function of anxiety.
Zotero Collections:

Although the systematic study of meditation is still in its infancy, research has provided evidence for meditation-induced improvements in psychological and physiological well-being. Moreover, meditation practice has been shown not only to benefit higher-order cognitive functions but also to alter brain activity. Nevertheless, little is known about possible links to brain structure. Using high-resolution MRI data of 44 subjects, we set out to examine the underlying anatomical correlates of long-term meditation with different regional specificity (i.e., global, regional, and local). For this purpose, we applied voxel-based morphometry in association with a recently validated automated parcellation approach. We detected significantly larger gray matter volumes in meditators in the right orbito-frontal cortex (as well as in the right thalamus and left inferior temporal gyrus when co-varying for age and/or lowering applied statistical thresholds). In addition, meditators showed significantly larger volumes of the right hippocampus. Both orbito-frontal and hippocampal regions have been implicated in emotional regulation and response control. Thus, larger volumes in these regions might account for meditators' singular abilities and habits to cultivate positive emotions, retain emotional stability, and engage in mindful behavior. We further suggest that these regional alterations in brain structures constitute part of the underlying neurological correlate of long-term meditation independent of a specific style and practice. Future longitudinal analyses are necessary to establish the presence and direction of a causal link between meditation practice and brain anatomy.

Muscle electrical activity, or "electromyogenic" (EMG) artifact, poses a serious threat to the validity of electroencephalography (EEG) investigations in the frequency domain. EMG is sensitive to a variety of psychological processes and can mask genuine effects or masquerade as legitimate neurogenic effects across the scalp in frequencies at least as low as the alpha band (8-13 Hz). Although several techniques for correcting myogenic activity have been described, most are subjected to only limited validation attempts. Attempts to gauge the impact of EMG correction on intracerebral source models (source "localization" analyses) are rarer still. Accordingly, we assessed the sensitivity and specificity of one prominent correction tool, independent component analysis (ICA), on the scalp and in the source-space using high-resolution EEG. Data were collected from 17 participants while neurogenic and myogenic activity was independently varied. Several protocols for classifying and discarding components classified as myogenic and non-myogenic artifact (e.g., ocular) were systematically assessed, leading to the exclusion of one-third to as much as three-quarters of the variance in the EEG. Some, but not all, of these protocols showed adequate performance on the scalp. Indeed, performance was superior to previously validated regression-based techniques. Nevertheless, ICA-based EMG correction exhibited low validity in the intracerebral source-space, likely owing to incomplete separation of neurogenic from myogenic sources. Taken with prior work, this indicates that EMG artifact can substantially distort estimates of intracerebral spectral activity. Neither regression- nor ICA-based EMG correction techniques provide complete safeguards against such distortions. In light of these results, several practical suggestions and recommendations are made for intelligently using ICA to minimize EMG and other common artifacts.
Zotero Collections:

Recent neuroimaging and neuropsychological work has begun to shed light on how the brain responds to the viewing of facial expressions of emotion. However, one important category of facial expression that has not been studied on this level is the facial expression of pain. We investigated the neural response to pain expressions by performing functional magnetic resonance imaging (fMRI) as subjects viewed short video sequences showing faces expressing either moderate pain or, for comparison, no pain. In alternate blocks, the same subjects received both painful and non-painful thermal stimulation. Facial expressions of pain were found to engage cortical areas also engaged by the first-hand experience of pain, including anterior cingulate cortex and insula. The reported findings corroborate other work in which the neural response to witnessed pain has been examined from other perspectives. In addition, they lend support to the idea that common neural substrates are involved in representing one's own and others' affective states.
Zotero Collections:

[F-18]Mefway was developed to provide an F-18 labeled positron emission tomography (PET) neuroligand with high affinity for the serotonin 5-HT(1A) receptor to improve the in vivo assessment of the 5-HT(1A) system. The goal of this work was to compare the in vivo kinetics of [F-18]mefway, [F-18]MPPF, and [C-11]WAY100635 in the rhesus monkey. METHODS: Each of four monkeys were given bolus injections of [F-18]mefway, [C-11]WAY100635, and [F-18]MPPF and scans were acquired with a microPET P4 scanner. Arterial blood was sampled to assay parent compound throughout the time course of the PET experiment. Time activity curves were extracted in the high 5-HT(1A) binding areas of the anterior cingulate cortex (ACG), mesial temporal cortex, raphe nuclei, and insula cortex. Time activity curves were also extracted in the cerebellum, which was used as a reference region. The in vivo kinetics of the radiotracers were compared based on the nondisplaceable distribution volume (V(ND) ) and binding potential (BP(ND) ). RESULTS: At 30 min, the fraction of radioactivity in the plasma due to parent compound was 19%, 28%, and 29% and cleared from the arterial plasma at rates of 0.0031, 0.0078, and 0.0069 (min⁻¹) ([F-18]mefway, [F-18]MPPF, [C-11]WAY100635). The BP(ND) in the brain regions were mesial temporal cortex: 7.4 ± 0.6, 3.1 ± 0.4, 7.0 ± 1.2, ACG: 7.2 ± 1.2, 2.1 ± 0.2, 7.9 ± 1.2; raphe nuclei: 3.7 ± 0.6, 1.3 ± 0.3, 3.3 ± 0.7; and insula cortex: 4.2 ± 0.6, 1.2 ± 0.1, 4.7 ± 1.0 for [F-18]mefway, [F-18]MPPF, and [C-11]WAY100635 respectively. CONCLUSIONS: In the rhesus monkey, [F-18]mefway has similar in vivo kinetics to [C-11]WAY100635 and yields greater than 2-fold higher BP(ND) than [F-18]MPPF. These properties make [F-18]mefway a promising radiotracer for 5-HT(1A) assay, providing higher counting statistics and a greater dynamic range in BP(ND).
Zotero Collections:

<p>The human voice is one of the principal conveyers of social and affective communication. Yet relatively little is known about the neural circuitry that supports the recognition of different vocally expressed emotions. We conducted an FMRI study to examine the brain responses to vocal expressions of anger and happiness, and to test whether specific brain regions showed preferential engagement in the processing of one emotion over the other. We also tested the extent to which simultaneously presented facial expressions of the same or different emotions would enhance brain responses, and to what degree such responses depend on attention towards the vocal expression. Forty healthy individuals were scanned while listening to vocal expressions of anger or happiness, while at the same time watching congruent or discrepant facial expressions. Happy voices elicited significantly more activation than angry voices in right anterior and posterior middle temporal gyrus (MTG), left posterior MTG and right inferior frontal gyrus. Furthermore, for the left MTG region, happy voices were related to higher activation only when paired with happy faces. Activation in the left insula, left amygdala and hippocampus, and rostral anterior cingulate cortex showed an effect of selectively attending to the vocal stimuli. Our results identify a network of regions implicated in the processing of vocal emotion, and suggest a particularly salient role for vocal expressions of happiness.</p>
Zotero Collections:

We present a novel weighted Fourier series (WFS) representation for cortical surfaces. The WFS representation is a data smoothing technique that provides the explicit smooth functional estimation of unknown cortical boundary as a linear combination of basis functions. The basic properties of the representation are investigated in connection with a self-adjoint partial differential equation and the traditional spherical harmonic (SPHARM) representation. To reduce steep computational requirements, a new iterative residual fitting (IRF) algorithm is developed. Its computational and numerical implementation issues are discussed in detail. The computer codes are also available at http://www.stat.wisc.edu/-mchung/softwares/weighted.SPHARM/weighted-SPHARM.html. As an illustration, the WFS is applied i n quantifying the amount ofgray matter in a group of high functioning autistic subjects. Within the WFS framework, cortical thickness and gray matter density are computed and compared.
Zotero Collections:

This commentary provides reflections on the current state of affairs in research on EEG frontal asymmetries associated with affect. Although considerable progress has occurred since the first report on this topic 25 years ago, research on frontal EEG asymmetries associated with affect has largely evolved in the absence of any serious connection with neuroscience research on the structure and function of the primate prefrontal cortex (PFC). Such integration is important as this work progresses since the neuroscience literature can help to understand what the prefrontal cortex is "doing" in affective processing. Data from the neuroscience literature on the heterogeneity of different sectors of the PFC are introduced and more specific hypotheses are offered about what different sectors of the PFC might be doing in affect. A number of methodological issues associated with EEG measures of functional prefrontal asymmetries are also considered.
Zotero Collections:

Pages

  • Page
  • of 8