Skip to main content Skip to search
Displaying 26 - 50 of 95

Pages

  • Page
  • of 4
Experienced Qigong meditators who regularly perform the exercises “Thinking of Nothing” and “Qigong” were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during “Qigong” than “Thinking of Nothing,” forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during “Thinking of Nothing” than “Qigong,” forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial–final no-task resting, “Qigong” showed activation in posterior areas whereas “Thinking of Nothing” showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during “Qigong” and anterior (left) prefrontal areas during “Thinking of Nothing” may reflect a predominance of self-reference, attention and input-centered processing in the “Qigong” meditation, and of control-centered processing in the “Thinking of Nothing” meditation.

Neurophenomenological studies seek to utilize first-person self-report to elucidate cognitive processes related to physiological data. Grounded theory offers an approach to the qualitative analysis of self-report, whereby theoretical constructs are derived from empirical data. Here we used grounded theory methodology (GTM) to assess how the first-person experience of meditation relates to neural activity in a core region of the default mode network—the posterior cingulate cortex (PCC). We analyzed first-person data consisting of meditators' accounts of their subjective experience during runs of a real time fMRI neurofeedback study of meditation, and third-person data consisting of corresponding feedback graphs of PCC activity during the same runs. We found that for meditators, the subjective experiences of “undistracted awareness” such as “concentration” and “observing sensory experience,” and “effortless doing” such as “observing sensory experience,” “not efforting,” and “contentment,” correspond with PCC deactivation. Further, the subjective experiences of “distracted awareness” such as “distraction” and “interpreting,” and “controlling” such as “efforting” and “discontentment,” correspond with PCC activation. Moreover, we derived several novel hypotheses about how specific qualities of cognitive processes during meditation relate to PCC activity, such as the difference between meditation and “trying to meditate.” These findings offer novel insights into the relationship between meditation and mind wandering or self-related thinking and neural activity in the default mode network, driven by first-person reports.
Zotero Collections:

Brosnan's research on chimpanzees and capuchin monkeys provides invaluable clues to unlocking the complex nature of human morality. Elaborating upon her claims, we explore the role of emotions in basic social interactions, social regulation processes, and morality, all of which may be crucial to both human and nonhuman communities. We then turn to a conceptualization of teasing and play as forums for negotiating norms and the boundaries of acceptable behavior, and focus on the role of emotions in assessing the moral character of others. Finally, we consider points of convergence and departure between human responses to relative deprivation and those observed by Brosnan in primates. We conclude that work such as Brosnan's paves the way for fruitful collaborations between scholars of morality from diverse fields.
Zotero Collections:

The authors present an overview of the neural bases of emotion. They underscore the role of the prefrontal cortex (PFC) and amygdala in 2 broad approach- and withdrawal-related emotion systems. Components and measures of affective style are identified. Emphasis is given to affective chronometry and a role for the PFC in this process is proposed. Plasticity in the central circuitry of emotion is considered, and implications of data showing experience-induced changes in the hippocampus for understanding psychopathology and stress-related symptoms are discussed. Two key forms of affective plasticity are described--context and regulation. A role for the hippocampus in context-dependent normal and dysfunctional emotional responding is proposed. Finally, implications of these data for understanding the impact on neural circuitry of interventions to promote positive affect and on mechanisms that govern health and disease are considered.
Zotero Collections:

<p>Summary Although meditation has been practiced worldwide for centuries, there are no reports that it causes epilepsy or increases the predisposition to it. Medical care utilization statistics and clinical studies indicate that individuals who regularly practice the Transcendental Meditation technique have fewer problems of the nervous system and specifically show decreased symptoms of epilepsy. The frequency, amplitude, areas of activation, and effects of the EEG during the Transcendental Meditation technique are completely different from those of epilepsy. There is no evidence that the Transcendental Meditation technique increases glutamate, which has been associated with epilepsy. With regard to serotonin, the relationship of serotonin to epilepsy has to be viewed in the context of the abnormal brain tissue that causes epilepsy. The serotonin increases that may occur through meditation have been associated with only beneficial effects.</p>

Metacognition refers to any knowledge or cognitive process that monitors or controls cognition. We highlight similarities between metacognitive and executive control functions, and ask how these processes might be implemented in the human brain. A review of brain imaging studies reveals a circuitry of attentional networks involved in these control processes, with its source located in midfrontal areas. These areas are active during conflict resolution, error correction, and emotional regulation. A developmental approach to the organization of the anatomy involved in executive control provides an added perspective on how these mechanisms are influenced by maturation and learning, and how they relate to metacognitive activity.

Many recent behavioral and neuroscientific studies have revealed the importance of investigating meditation states and traits to achieve an increased understanding of cognitive and affective neuroplasticity, attention and self-awareness, as well as for their increasingly recognized clinical relevance. The investigation of states and traits related to meditation has especially pronounced implications for the neuroscience of attention, consciousness, self-awareness, empathy and theory of mind. In this article we present the main features of meditation-based mental training and characterize the current scientific approach to meditation states and traits with special reference to attention and consciousness, in light of the articles contributed to this issue.

<p>With his knack for making science intelligible for the layman, and his ability to illuminate scientific concepts through analogy and reference to personal experience, James Zull offers the reader an engrossing and coherent introduction to what neuroscience can tell us about cognitive development through experience, and its implications for education.Stating that educational change is underway and that the time is ripe to recognize that the primary objective of education is to understand human learning and that all other objectives depend on achieving this understanding, James Zull challenges the reader to focus on this purpose, first for her or himself, and then for those for whose learning they are responsible. The book is addressed to all learners and educators to the reader as self-educator embarked on the journey of lifelong learning, to the reader as parent, and to readers who are educators in schools or university settings, as well as mentors and trainers in the workplace.In this work, James Zull presents cognitive development as a journey taken by the brain, from an organ of organized cells, blood vessels, and chemicals at birth, through its shaping by experience and environment into potentially to the most powerful and exquisite force in the universe, the human mind.Zull begins his journey with sensory-motor learning, and how that leads to discovery, and discovery to emotion. He then describes how deeper learning develops, how symbolic systems such as language and numbers emerge as tools for thought, how memory builds a knowledge base, and how memory is then used to create ideas and solve problems. Along the way he prompts us to think of new ways to shape educational experiences from early in life through adulthood, informed by the insight that metacognition lies at the root of all learning.At a time when we can expect to change jobs and careers frequently during our lifetime, when technology is changing society at break-neck speed, and we have instant access to almost infinite information and opinion, he argues that self-knowledge, awareness of how and why we think as we do, and the ability to adapt and learn, are critical to our survival as individuals; and that the transformation of education, in the light of all this and what neuroscience can tell us, is a key element in future development of healthy and productive societies.</p>

<p>With each eye fixation, we experience a richly detailed visual world. Yet recent work on visual integration and change direction reveals that we are surprisingly unaware of the details of our environment from one view to the next: we often do not detect large changes to objects and scenes ('change blindness'). Furthermore, without attention, we may not even perceive objects ('inattentional blindness'). Taken together, these findings suggest that we perceive and remember only those objects and details that receive focused attention. In this paper, we briefly review and discuss evidence for these cognitive forms of 'blindness'. We then present a new study that builds on classic studies of divided visual attention to examine inattentional blindness for complex objects and events in dynamic scenes. Our results suggest that the likelihood of noticing an unexpected object depends on the similarity of that object to other objects in the display and on how difficult the priming monitoring task is. Interestingly, spatial proximity of the critical unattended object to attended locations does not appear to affect detection, suggesting that observers attend to objects and events, not spatial positions. We discuss the implications of these results for visual representations and awareness of our visual environment.</p>

Participants in the dialogue between science and Buddhism have long modeled their discussion primarily on the idea of convergence, the premise that the most significant comparisons are those that reveal common ground. This is by no means the only model for comparative discussion, and I would argue that in the case of Buddhism and science it is deeply flawed. Instead, another model—one based on mutual challenge, in which the two sides are able to shed light on each other precisely because of their differences—offers what I see as a more potentially fruitful alternative.
Zotero Tags:

Cultivation of mindfulness, the nonjudgmental awareness of experiences in the present moment, produces beneficial effects on well-being and ameliorates psychiatric and stress-related symptoms. Mindfulness meditation has therefore increasingly been incorporated into psychotherapeutic interventions. Although the number of publications in the field has sharply increased over the last two decades, there is a paucity of theoretical reviews that integrate the existing literature into a comprehensive theoretical framework. In this article, we explore several components through which mindfulness meditation exerts its effects: (a) attention regulation, (b) body awareness, (c) emotion regulation (including reappraisal and exposure, extinction, and reconsolidation), and (d) change in perspective on the self. Recent empirical research, including practitioners’ self-reports and experimental data, provides evidence supporting these mechanisms. Functional and structural neuroimaging studies have begun to explore the neuroscientific processes underlying these components. Evidence suggests that mindfulness practice is associated with neuroplastic changes in the anterior cingulate cortex, insula, temporo-parietal junction, fronto-limbic network, and default mode network structures. The authors suggest that the mechanisms described here work synergistically, establishing a process of enhanced self-regulation. Differentiating between these components seems useful to guide future basic research and to specifically target areas of development in the treatment of psychological disorders.
Zotero Collections:

Neurosurgical treatment of psychiatric disorders has been influenced by evolving neurobiological models of symptom generation. The advent of functional neuroimaging and advances in the neurosciences have revolutionized understanding of the functional neuroanatomy of psychiatric disorders. This article reviews neuroimaging studies of depression from the last 3 decades and describes an emerging neurocircuitry model of mood disorders, focusing on critical circuits of cognition and emotion, particularly those networks involved in the regulation of evaluative, expressive and experiential aspects of emotion. The relevance of this model for neurotherapeutics is discussed, as well as the role of functional neuroimaging of psychiatric disorders.
Zotero Collections:

<p>Successful human social interaction depends on our capacity to understand other people's mental states and to anticipate how they will react to our actions. Despite its importance to the human condition, the exact mechanisms underlying our ability to understand another's actions, feelings, and thoughts are still a matter of conjecture. Here, we consider this problem from philosophical, psychological, and neuroscientific perspectives. In a critical review, we demonstrate that attempts to draw parallels across these complementary disciplines is premature: The second-person perspective does not map directly to Interaction or Simulation theories, online social cognition, or shared neural network accounts underlying action observation or empathy. Nor does the third-person perspective map onto Theory-Theory (TT), offline social cognition, or the neural networks that support Theory of Mind (ToM). Moreover, we argue that important qualities of social interaction emerge through the reciprocal interplay of two independent agents whose unpredictable behavior requires that models of their partner's internal state be continually updated. This analysis draws attention to the need for paradigms in social neuroscience that allow two individuals to interact in a spontaneous and natural manner and to adapt their behavior and cognitions in a response contingent fashion due to the inherent unpredictability in another person's behavior. Even if such paradigms were implemented, it is possible that the specific neural correlates supporting such reciprocal interaction would not reflect computation unique to social interaction but rather the use of basic cognitive and emotional processes combined in a unique manner. Finally, we argue that given the crucial role of social interaction in human evolution, ontogeny, and every-day social life, a more theoretically and methodologically nuanced approach to the study of real social interaction will nevertheless help the field of social cognition to evolve.</p>
Zotero Collections:

<p>Imaging techniques provide ways of knowing structure and function in biology at different scales. The multidisciplinary nature and rapid advancement of imaging sciences requires imaging education to begin early in the biology curriculum. Guided by the National Institutes of Health (NIH) Roadmap initiatives, we incorporated a nanoimaging, molecular imaging, and medical imaging teaching unit into three 1-h class periods of an introductory course on ways of knowing biology. Activities were derived from NIH Roadmap initiatives in nanomedicine, regenerative medicine, and nuclear medicine. The course materials we describe contributed positively to student learning gains in quantifying and interpreting images, in characterizing imaging methods that provide ways of knowing biological structure and function, and in understanding scale in biology and imaging. The NIH Roadmap provides a useful context to educate students about the multidisciplinary imaging continuum.</p>
Zotero Collections:

This article explores the concept of interiority as it relates to education and contemplation. Primarily, four general dimensions of consciousness related to learning are examined: presence, clarity, detachment, and resilience. The direct experience of these states and processes are described and explored in light of contemporary research on the neuro-physiologic correlates of various contemplative practices. This neurophenomenological approach considers the evidence and argument for the value of contemplation in education.

<p>Buddhists have enjoyed the benefits of meditation for millennia. Here, renowned Buddhist teacher Yongey Mingyur invites us to join him in unlocking the secrets behind this practice. Working with neuroscientists at the Waisman Laboratory for Brain Imaging and Behavior, Yongey Mingyur provides insights into modern research indicating that systematic training in meditation can enhance activity in areas of the brain associated with happiness and compassion. He has also worked with physicists across the country to develop a scientifically based interpretation of the Buddhist understanding of the nature of reality. Yongey Mingyur weaves together the principles of Tibetan Buddhism, neuroscience, and quantum physics in a way that will change the way we understand the human experience. Using the basic meditation practices he provides, we can discover paths through everyday problems, transforming obstacles into opportunities to recognize the unlimited potential of our own minds.--From publisher description.</p>

Pages

  • Page
  • of 4