Skip to main content Skip to search
Displaying 76 - 94 of 94

Pages

  • Page
  • of 4
<p>The relaxation response (RR) is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal) genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS) as top upregulated critical molecules (focus hubs) and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress.</p>
Zotero Collections:

Given the central role of the amygdala in fear perception and expression and its likely abnormality in affective disorders and autism, there is great demand for a technique to measure differences in neurochemistry of the human amygdala. Unfortunately, it is also a technically complex target for magnetic resonance spectroscopy (MRS) due to a small volume, high field inhomogeneity and a shared boundary with hippocampus, which can undergo opposite changes in response to stress. We attempted to achieve reliable PRESS-localized single-voxel MRS at 3T of the isolated human amygdala by using anatomy to guide voxel size and location. We present data from 106 amygdala-MRS sessions from 58 volunteers aged 10 to 52 years, including two tests of one-week stability and a feasibility study in an adolescent sample. Our main outcomes were indices of spectral quality, repeated measurement variability (within- and between-subject standard deviations), and sensitivity to stable individual differences measured by intra-class correlation (ICC). We present metrics of amygdala-MRS reliability for n-acetyl-aspartate, creatine, choline, myo-Inositol, and glutamate+glutamine (Glx). We found that scan quality suffers an age-related difference in field homogeneity and modified our protocol to compensate. We further identified an effect of anatomical inclusion near the endorhinal sulcus, a region of high synaptic density, that contributes up to 29% of within-subject variability across 4 sessions (n=14). Remaining variability in line width but not signal-to-noise also detracts from reliability. Statistical correction for partial inclusion of these strong neurochemical gradients decreases n-acetyl-aspartate reliability from an intraclass correlation of 0.84 to 0.56 for 7-minute acquisitions. This suggests that systematic differences in anatomical inclusion can contribute greatly to apparent neurochemical concentrations and could produce false group differences in experimental studies. Precise, anatomically-based prescriptions that avoid age-related sources of inhomogeneity and use longer scan times may permit study of individual differences in neurochemistry throughout development in this late-maturing structure.
Zotero Collections:

Four U.S. sites formed a consortium to conduct a multisite study of fMRI methods. The primary purpose of this consortium was to examine the reliability and reproducibility of fMRI results. FMRI data were collected on healthy adults during performance of a spatial working memory task at four different institutions. Two sets of data from each institution were made available. First, data from two subjects were made available from each site and were processed and analyzed as a pooled data set. Second, statistical maps from five to eight subjects per site were made available. These images were aligned in stereotactic space and common regions of activation were examined to address the reproducibility of fMRI results when both image acquisition and analysis vary as a function of site. Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sites. This multisite study, the first of its kind using fMRI data, demonstrates highly consistent findings across sites.
Zotero Collections:

<p>As Titchener pointed out more than one hundred years ago, attention is at the center of the psychological enterprise. Attention research investigates how voluntary control and subjective experience arise from and regulate our behavior. In recent years, attention has been one of the fastest growing of all fields within cognitive psychology and cognitive neuroscience. This review examines attention as characterized by linking common neural networks with individual differences in their efficient utilization. The development of attentional networks is partly specified by genes, but is also open to specific experiences through the actions of caregivers and the culture. We believe that the connection between neural networks, genes, and socialization provides a common approach to all aspects of human cognition and emotion. Pursuit of this approach can provide a basis for psychology that unifies social, cultural, differential, experimental, and physiological areas, and allows normal development to serve as a baseline for understanding various forms of pathology. D.O. Hebb proposed this approach 50 years ago in his volume Organization of Behavior and continued with introductory textbooks that dealt with all of the topics of psychology in a common framework. Use of a common network approach to psychological science may allow a foundation for predicting and understanding human behavior in its varied forms.</p>

Drawing on recent claims in the study of relationships, attachment, and emotion, the authors hypothesized that romantic love serves a commitment-related function and sexual desire a reproduction-related function. Consistent with these claims, in Study 1, brief experiences of romantic love and sexual desire observed in a 3-min interaction between romantic partners were related to distinct feeling states, distinct nonverbal displays, and commitment- and reproductive-related relationship outcomes, respectively. In Study 2, the nonverbal display of romantic love was related to the release of oxytocin. Discussion focuses on the place of romantic love and sexual desire in the literature on emotion.
Zotero Collections:

Test-retest reliability of resting regional cerebral metabolic rate of glucose (rCMR) was examined in selected subcortical structures: the amygdala, hippocampus, thalamus, and anterior caudate nucleus. Findings from previous studies examining reliability of rCMR suggest that rCMR in small subcortical structures may be more variable than in larger cortical regions. We chose to study these subcortical regions because of their particular interest to our laboratory in its investigations of the neurocircuitry of emotion and depression. Twelve normal subjects (seven female, mean age = 32.42 years, range 21-48 years) underwent two FDG-PET scans separated by approximately 6 months (mean = 25 weeks, range 17-35 weeks). A region-of-interest approach with PET-MRI coregistration was used for analysis of rCMR reliability. Good test-retest reliability was found in the left amygdala, right and left hippocampus, right and left thalamus, and right and left anterior caudate nucleus. However, rCMR in the right amygdala did not show good test-retest reliability. The implications of these data and their import for studies that include a repeat-test design are considered.
Zotero Collections:

<p>Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.</p>
Zotero Collections:

We used fMRI to examine amygdala activation in response to fearful facial expressions, measured over multiple scanning sessions. 15 human subjects underwent three scanning sessions, at 0, 2 and 8 weeks. During each session, functional brain images centered about the amygdala were acquired continuously while participants were shown alternating blocks of fearful, neutral and happy facial expressions. Intraclass correlation coefficients calculated across the sessions indicated stability of response in left amygdala to fearful faces (as a change from baseline), but considerably less left amygdala stability in responses to neutral expressions and for fear versus neutral contrasts. The results demonstrate that the measurement of fMRI BOLD responses in amygdala to fearful facial expressions might be usefully employed as an index of amygdala reactivity over extended periods. While signal change to fearful facial expressions appears robust, the experimental design employed here has yielded variable responsivity within baseline or comparison conditions. Future studies might manipulate the experimental design to either amplify or attenuate this variability, according to the goals of the research.
Zotero Collections:

The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the e-neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.
Zotero Collections:

Tactile communication, or physical touch, promotes cooperation between people, communicates distinct emotions, soothes in times of stress, and is used to make inferences of warmth and trust. Based on this conceptual analysis, we predicted that in group competition, physical touch would predict increases in both individual and group performance. In an ethological study, we coded the touch behavior of players from the National Basketball Association (NBA) during the 2008-2009 regular season. Consistent with hypotheses, early season touch predicted greater performance for individuals as well as teams later in the season. Additional analyses confirmed that touch predicted improved performance even after accounting for player status, preseason expectations, and early season performance. Moreover, coded cooperative behaviors between teammates explained the association between touch and team performance. Discussion focused on the contributions touch makes to cooperative groups and the potential implications for other group settings.
Zotero Collections:

We present a new tensor-based morphometric framework that quantifies cortical shape variations using a local area element. The local area element is computed from the Riemannian metric tensors, which are obtained from the smooth functional parametrization of a cortical mesh. For the smooth parametrization, we have developed a novel weighted spherical harmonic (SPHARM) representation, which generalizes the traditional SPHARM as a special case. For a specific choice of weights, the weighted-SPHARM is shown to be the least squares approximation to the solution of an isotropic heat diffusion on a unit sphere. The main aims of this paper are to present the weighted-SPHARM and to show how it can be used in the tensor-based morphometry. As an illustration, the methodology has been applied in the problem of detecting abnormal cortical regions in the group of high functioning autistic subjects.
Zotero Collections:

In recent years, three attentional networks have been defined in anatomical and functional terms. These functions involve alerting, orienting, and executive attention. Reaction time measures can be used to quantify the processing efficiency within each of these three networks. The Attention Network Test (ANT) is designed to evaluate alerting, orienting, and executive attention within a single 30-min testing session that can be easily performed by children, patients, and monkeys. A study with 40 normal adult subjects indicates that the ANT produces reliable single subject estimates of alerting, orienting, and executive function, and further suggests that the efficiencies of these three networks are uncorrelated. There are, however, some interactions in which alerting and orienting can modulate the degree of interference from flankers. This procedure may prove to be convenient and useful in evaluating attentional abnormalities associated with cases of brain injury, stroke, schizophrenia, and attention-deficit disorder. The ANT may also serve as an activation task for neuroimaging studies and as a phenotype for the study of the influence of genes on attentional networks.

BACKGROUND: EEG alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The hypothesis that the thalamus serves as a neuronal oscillator of alpha rhythms has been supported by studies in animals, but only minimally by studies in humans. METHODS: In the current study, PET-derived measures of regional glucose metabolism, EEG, and structural MRI were obtained from each participant to assess the relation between thalamic metabolic activity and alpha power in depressed patients and healthy controls. The thalamus was identified and drawn on each subject's MRI. The MRI was then co-registered to the corresponding PET scan and metabolic activity from the thalamus extracted. Thalamic activity was then correlated with a 30-min aggregated average of alpha EEG power. RESULTS: Robust inverse correlations were observed in the control data, indicating that greater thalamic metabolism is correlated with decreased alpha power. No relation was found in the depressed patient data. CONCLUSIONS: The results are discussed in the context of a possible abnormality in thalamocortical circuitry associated with depression.
Zotero Collections:

The study of emotional signaling has focused almost exclusively on the face and voice. In 2 studies, the authors investigated whether people can identify emotions from the experience of being touched by a stranger on the arm (without seeing the touch). In the 3rd study, they investigated whether observers can identify emotions from watching someone being touched on the arm. Two kinds of evidence suggest that humans can communicate numerous emotions with touch. First, participants in the United States (Study 1) and Spain (Study 2) could decode anger, fear, disgust, love, gratitude, and sympathy via touch at much-better-than-chance levels. Second, fine-grained coding documented specific touch behaviors associated with different emotions. In Study 3, the authors provide evidence that participants can accurately decode distinct emotions by merely watching others communicate via touch. The findings are discussed in terms of their contributions to affective science and the evolution of altruism and cooperation.
Zotero Collections:

Planned and reflexive behaviors often occur in the presence of emotional stimuli and within the context of an individual's acute emotional state. Therefore, determining the manner in which emotion and attention interact is an important step toward understanding how we function in the real world. Participants in the current investigation viewed centrally displayed, task-irrelevant, face distractors (angry, neutral, happy) while performing a lateralized go/no-go continuous performance task. Lateralized go targets and no-go lures that did not spatially overlap with the faces were employed to differentially probe processing in the left (LH) and right (RH) cerebral hemispheres. There was a significant interaction between expression and hemisphere, with an overall pattern such that angry distractors were associated with relatively more RH inhibitory errors than neutral or happy distractors and happy distractors with relatively more LH inhibitory errors than angry or neutral distractors. Simple effects analyses confirmed that angry faces differentially interfered with RH relative to LH inhibition and with inhibition in the RH relative to happy faces. A significant three-way interaction further revealed that state anxiety moderated relations between emotional expression and hemisphere. Under conditions of low cognitive load, more intense anxiety was associated with relatively greater RH than LH impairment in the presence of both happy and threatening distractors. By contrast, under high load, only angry distractors produced greater RH than LH interference as a function of anxiety.
Zotero Collections:

Muscle electrical activity, or "electromyogenic" (EMG) artifact, poses a serious threat to the validity of electroencephalography (EEG) investigations in the frequency domain. EMG is sensitive to a variety of psychological processes and can mask genuine effects or masquerade as legitimate neurogenic effects across the scalp in frequencies at least as low as the alpha band (8-13 Hz). Although several techniques for correcting myogenic activity have been described, most are subjected to only limited validation attempts. Attempts to gauge the impact of EMG correction on intracerebral source models (source "localization" analyses) are rarer still. Accordingly, we assessed the sensitivity and specificity of one prominent correction tool, independent component analysis (ICA), on the scalp and in the source-space using high-resolution EEG. Data were collected from 17 participants while neurogenic and myogenic activity was independently varied. Several protocols for classifying and discarding components classified as myogenic and non-myogenic artifact (e.g., ocular) were systematically assessed, leading to the exclusion of one-third to as much as three-quarters of the variance in the EEG. Some, but not all, of these protocols showed adequate performance on the scalp. Indeed, performance was superior to previously validated regression-based techniques. Nevertheless, ICA-based EMG correction exhibited low validity in the intracerebral source-space, likely owing to incomplete separation of neurogenic from myogenic sources. Taken with prior work, this indicates that EMG artifact can substantially distort estimates of intracerebral spectral activity. Neither regression- nor ICA-based EMG correction techniques provide complete safeguards against such distortions. In light of these results, several practical suggestions and recommendations are made for intelligently using ICA to minimize EMG and other common artifacts.
Zotero Collections:

Recent neuroimaging and neuropsychological work has begun to shed light on how the brain responds to the viewing of facial expressions of emotion. However, one important category of facial expression that has not been studied on this level is the facial expression of pain. We investigated the neural response to pain expressions by performing functional magnetic resonance imaging (fMRI) as subjects viewed short video sequences showing faces expressing either moderate pain or, for comparison, no pain. In alternate blocks, the same subjects received both painful and non-painful thermal stimulation. Facial expressions of pain were found to engage cortical areas also engaged by the first-hand experience of pain, including anterior cingulate cortex and insula. The reported findings corroborate other work in which the neural response to witnessed pain has been examined from other perspectives. In addition, they lend support to the idea that common neural substrates are involved in representing one's own and others' affective states.
Zotero Collections:

Reputation systems promote cooperation and deter antisocial behavior in groups. Little is known, however, about how and why people share reputational information. Here, we seek to establish the existence and dynamics of prosocial gossip, the sharing of negative evaluative information about a target in a way that protects others from antisocial or exploitative behavior. We present a model of prosocial gossip and the results of 4 studies testing the model's claims. Results of Studies 1 through 3 demonstrate that (a) individuals who observe an antisocial act experience negative affect and are compelled to share information about the antisocial actor with a potentially vulnerable person, (b) sharing such information reduces negative affect created by observing the antisocial behavior, and (c) individuals possessing more prosocial orientations are the most motivated to engage in such gossip, even at a personal cost, and exhibit the greatest reduction in negative affect as a result. Study 4 demonstrates that prosocial gossip can effectively deter selfishness and promote cooperation. Taken together these results highlight the roles of prosocial motivations and negative affective reactions to injustice in maintaining reputational information sharing in groups. We conclude by discussing implications for reputational theories of the maintenance of cooperation in human groups.
Zotero Collections:

We present a novel weighted Fourier series (WFS) representation for cortical surfaces. The WFS representation is a data smoothing technique that provides the explicit smooth functional estimation of unknown cortical boundary as a linear combination of basis functions. The basic properties of the representation are investigated in connection with a self-adjoint partial differential equation and the traditional spherical harmonic (SPHARM) representation. To reduce steep computational requirements, a new iterative residual fitting (IRF) algorithm is developed. Its computational and numerical implementation issues are discussed in detail. The computer codes are also available at http://www.stat.wisc.edu/-mchung/softwares/weighted.SPHARM/weighted-SPHARM.html. As an illustration, the WFS is applied i n quantifying the amount ofgray matter in a group of high functioning autistic subjects. Within the WFS framework, cortical thickness and gray matter density are computed and compared.
Zotero Collections:

Pages

  • Page
  • of 4