Displaying 1 - 5 of 5
BACKGROUND: Functional magnetic resonance imaging (fMRI) holds promise as a noninvasive means of identifying neural responses that can be used to predict treatment response before beginning a drug trial. Imaging paradigms employing facial expressions as presented stimuli have been shown to activate the amygdala and anterior cingulate cortex (ACC). Here, we sought to determine whether pretreatment amygdala and rostral ACC (rACC) reactivity to facial expressions could predict treatment outcomes in patients with generalized anxiety disorder (GAD).
METHODS: Fifteen subjects (12 female subjects) with GAD participated in an open-label venlafaxine treatment trial. Functional magnetic resonance imaging responses to facial expressions of emotion collected before subjects began treatment were compared with changes in anxiety following 8 weeks of venlafaxine administration. In addition, the magnitude of fMRI responses of subjects with GAD were compared with that of 15 control subjects (12 female subjects) who did not have GAD and did not receive venlafaxine treatment.
RESULTS: The magnitude of treatment response was predicted by greater pretreatment reactivity to fearful faces in rACC and lesser reactivity in the amygdala. These individual differences in pretreatment rACC and amygdala reactivity within the GAD group were observed despite the fact that 1) the overall magnitude of pretreatment rACC and amygdala reactivity did not differ between subjects with GAD and control subjects and 2) there was no main effect of treatment on rACC-amygdala reactivity in the GAD group.
CONCLUSIONS: These findings show that this pattern of rACC-amygdala responsivity could prove useful as a predictor of venlafaxine treatment response in patients with GAD.
Zotero Collections:
<p>BACKGROUND: Functional magnetic resonance imaging (fMRI) techniques were used to identify the neural circuitry underlying emotional processing in control and depressed subjects. Depressed subjects were studied before and after treatment with venlafaxine. This new technique provides a method to noninvasively image regional brain function with unprecedented spatial and temporal resolution. METHOD: Echo-planar imaging was used to acquire whole brain images while subjects viewed positively and negatively valenced visual stimuli. Two control subjects and two depressed subjects who met DSM-IV criteria for major depression were scanned at baseline and 2 weeks later. Depressed subjects were treated with venlafaxine after the baseline scan. RESULTS: Preliminary results from this ongoing study revealed three interesting trends in the data. Both depressed patients demonstrated considerable symptomatic improvement at the time of the second scan. Across control and depressed subjects, the negative compared with the positive pictures elicited greater global activation. In both groups, activation induced by the negative pictures decreased from the baseline scan to the 2-week scan. This decrease in activation was also present in the control subjects when they were exposed to the positive pictures. In contrast, when the depressed subjects were presented with the positive pictures they showed no activation at baseline, whereas after 2 weeks of treatment an area of activation emerged in right secondary visual cortex. CONCLUSION: While preliminary, these results demonstrate the power of using fMRI to study emotional processes in normal and depressed subjects and to examine mechanisms of action of antidepressant drugs.</p>
Zotero Collections:
OBJECTIVE: The purpose of this study was to use functional magnetic resonance imaging (fMRI) to probe the neural circuitry associated with reactivity to negative and positive affective stimuli in patients with major depressive disorder before treatment and after 2 and 8 weeks of treatment with venlafaxine. Relations between baseline neural activation and response to treatment were also evaluated.
METHOD: Patients with major depressive disorder (N=12) and healthy comparison subjects (N=5) were scanned on three occasions, during which trials of alternating blocks of affective and neutral pictorial visual stimuli were presented. Symptoms were evaluated at each testing occasion, and both groups completed self-report measures of mood. Statistical parametric mapping was used to examine the fMRI data with a focus on the group-by-time interactions.
RESULTS: Patients showed a significant reduction in depressive symptoms with treatment. Group-by-time interactions in response to the negative versus neutral stimuli were found in the left insular cortex and the left anterior cingulate. At baseline, both groups showed bilateral activation in the visual cortices, lateral prefrontal cortex, and amygdala in response to the negative versus neutral stimuli, with patients showing greater activation in the visual cortex and less activation in the left lateral prefrontal cortex. Patients with greater relative anterior cingulate activation at baseline in response to the negative versus neutral stimuli showed the most robust treatment response.
CONCLUSIONS: The findings underscore the importance of the neural circuitry activated by negative affect in depression and indicate that components of this circuitry can be changed within 2 weeks of treatment with antidepressant medication.
Zotero Collections:
BACKGROUND: Anhedonia, a reduced ability to experience pleasure, is a chief symptom of major depressive disorder and is related to reduced frontostriatal connectivity when attempting to upregulate positive emotion. The present study examined another facet of positive emotion regulation associated with anhedonia-namely, the downregulation of positive affect-and its relation to prefrontal cortex (PFC) activity.
METHODS: Neuroimaging data were collected from 27 individuals meeting criteria for major depressive disorder as they attempted to suppress positive emotion during a positive emotion regulation task. Their PFC activation pattern was compared with the PFC activation pattern exhibited by 19 healthy control subjects during the same task. Anhedonia scores were collected at three time points: at baseline (time 1), 8 weeks after time 1 (i.e., time 2), and 6 months after time 1 (i.e., time 3). Prefrontal cortex activity at time 1 was used to predict change in anhedonia over time. Analyses were conducted utilizing hierarchical linear modeling software.
RESULTS: Depressed individuals who could not inhibit positive emotion-evinced by reduced right ventrolateral prefrontal cortex activity during attempts to dampen their experience of positive emotion in response to positive visual stimuli-exhibited a steeper anhedonia reduction slope between baseline and 8 weeks of treatment with antidepressant medication (p < .05). Control subjects showed a similar trend between baseline and time 3.
CONCLUSIONS: To reduce anhedonia, it may be necessary to teach individuals how to counteract the functioning of an overactive pleasure-dampening prefrontal inhibitory system.
Zotero Collections:
OBJECTIVE Deficits in positive affect and their neural bases have been associated with major depression. However, whether reductions in positive affect result solely from an overall reduction in nucleus accumbens activity and fronto-striatal connectivity or the additional inability to sustain engagement of this network over time is unknown. The authors sought to determine whether treatment-induced changes in the ability to sustain nucleus accumbens activity and fronto-striatal connectivity during the regulation of positive affect are associated with gains in positive affect. METHOD Using fMRI, the authors assessed the ability to sustain activity in reward-related networks when attempting to increase positive emotion during performance of an emotion regulation paradigm in 21 depressed patients before and after 2 months of antidepressant treatment. Over the same interval, 14 healthy comparison subjects underwent scanning as well. RESULTS After 2 months of treatment, self-reported positive affect increased. The patients who demonstrated the largest increases in sustained nucleus accumbens activity over the 2 months were those who demonstrated the largest increases in positive affect. In addition, the patients who demonstrated the largest increases in sustained fronto-striatal connectivity were also those who demonstrated the largest increases in positive affect when controlling for negative affect. None of these associations were observed in healthy comparison subjects. CONCLUSIONS Treatment-induced change in the sustained engagement of fronto-striatal circuitry tracks the experience of positive emotion in daily life. Studies examining reduced positive affect in a variety of psychiatric disorders might benefit from examining the temporal dynamics of brain activity when attempting to understand changes in daily positive affect.
Zotero Collections: