Skip to main content Skip to search
Displaying 1 - 25 of 35

Pages

  • Page
  • of 2
Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Our results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes.
Zotero Collections:

OBJECTIVE: The anticipation of adverse outcomes, or worry, is a cardinal symptom of generalized anxiety disorder. Prior work with healthy subjects has shown that anticipating aversive events recruits a network of brain regions, including the amygdala and anterior cingulate cortex. This study tested whether patients with generalized anxiety disorder have alterations in anticipatory amygdala function and whether anticipatory activity in the anterior cingulate cortex predicts treatment response. METHOD: Functional magnetic resonance imaging (fMRI) was employed with 14 generalized anxiety disorder patients and 12 healthy comparison subjects matched for age, sex, and education. The event-related fMRI paradigm was composed of one warning cue that preceded aversive pictures and a second cue that preceded neutral pictures. Following the fMRI session, patients received 8 weeks of treatment with extended-release venlafaxine. RESULTS: Patients with generalized anxiety disorder showed greater anticipatory activity than healthy comparison subjects in the bilateral dorsal amygdala preceding both aversive and neutral pictures. Building on prior reports of pretreatment anterior cingulate cortex activity predicting treatment response, anticipatory activity in that area was associated with clinical outcome 8 weeks later following treatment with venlafaxine. Higher levels of pretreatment anterior cingulate cortex activity in anticipation of both aversive and neutral pictures were associated with greater reductions in anxiety and worry symptoms. CONCLUSIONS: These findings of heightened and indiscriminate amygdala responses to anticipatory signals in generalized anxiety disorder and of anterior cingulate cortex associations with treatment response provide neurobiological support for the role of anticipatory processes in the pathophysiology of generalized anxiety disorder.
Zotero Collections:

The brain and the cardiovascular system influence each other during the processing of emotion. The study of the interactions of these systems during emotion regulation has been limited in human functional neuroimaging, despite its potential importance for physical health. We have previously reported that mental expertise in cultivation of compassion alters the activation of circuits linked with empathy and theory of mind in response to emotional stimuli. Guided by the finding that heart rate increases more during blocks of compassion meditation than neutral states, especially for experts, we examined the interaction between state (compassion vs. neutral) and group (novice, expert) on the relation between heart rate and BOLD signal during presentation of emotional sounds presented during each state. Our findings revealed that BOLD signal in the right middle insula showed a significant association with heart rate (HR) across state and group. This association was stronger in the left middle/posterior insula when experts were compared to novices. The positive coupling of HR and BOLD was higher within the compassion state than within the neutral state in the dorsal anterior cingulate cortex for both groups, underlining the role of this region in the modulation of bodily arousal states. This state effect was stronger for experts than novices in somatosensory cortices and the right inferior parietal lobule (group by state interaction). These data confirm that compassion enhances the emotional and somatosensory brain representations of others' emotions, and that this effect is modulated by expertise. Future studies are needed to further investigate the impact of compassion training on these circuits.
Zotero Collections:

<p>Publisher's description: Buddha Mind in Contemporary Art documents the growing presence of Buddhist perspectives in contemporary culture. This shift began in the nineteenth century and is now pervasive in many aspects of everyday experience. In the arts especially, the increasing importance of process over product has promoted a profound change in the relationship between artist and audience. But while artists have been among the most perceptive interpreters of Buddhism in the West, art historians and critics have been slow to develop the intellectual tools to analyze the impact of Buddhist concepts. This timely, multi-faceted volume explores the relationships between Buddhist practice and the contemporary arts in lively essays by writers from a range of disciplines and in revealing interviews with some of the most influential artists of our time. Elucidating the common ground between the creative mind, the perceiving mind, and the meditative mind, the contributors tackle essential questions about the relationship of art and life. Among the writers are curators, art critics, educators, and Buddhist commentators in psychology, literature, and cognitive science. They consider the many Western artists today who recognize the Buddhist notion of emptiness, achieved through focused meditation, as a place of great creative potential for the making and experiencing of art. The artists featured in the interviews, all internationally recognized, include Maya Lin, Bill Viola, and Ann Hamilton. Extending earlier twentieth-century aesthetic interests in blurring the boundaries of art and life, the artists view art as a way of life, a daily practice, in ways parallel to that of the Buddhist practitioner. Their works, woven throughout the book, richly convey how Buddhism has been both a source for and a lens through which we now perceive art.</p>

The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Zotero Collections:

Some children show emotion that is not consistent with normative appraisal of the context and can therefore be defined as context inappropriate (CI). The authors used individual growth curve modeling and hierarchical multiple regression analyses to examine whether CI anger predicts differences in hypothalamic-pituitary-adrenal axis activity, as manifest in salivary cortisol measures. About 23% of the 360 children (ages 6-10 years, primarily 7-8) showed at least 1 expression of CI anger in situations designed to elicit positive affect. Expression of anger across 2 positive assessments was less common (around 4%). CI anger predicted the hypothesized lower levels of cortisol beyond that attributed to context appropriate anger. Boys' CI anger predicted lower morning cortisol and flatter slopes. Results suggest that this novel approach to studying children's emotion across varying contexts can provide insight into affective style.
Zotero Collections:

The authors compared 12 pairs of cerebral [18F]-fluoro-deoxyglucose (FDG) 2D/3D image sets from a GE/Advance PET scanner, incorporating the actual corrections used on human subjects. Differences in resolution consistent with other published values were found. There is a significant difference in axial resolution between 2D and 3D, and the authors focused on this as it is a scanner feature that cannot be readily changed. Previously published values for spatial axial resolution in 2D and 3D modes were used to model the differential axial smoothing at each image voxel. This model was applied to the 2D FDG images, and the resulting smoothed data indicate the published differences in axial resolution between 2D and 3D modes can account for 30-40% of the differences between these image sets. The authors then investigated the effect this difference might have on analysis typically performed on human FDG data. A phantom containing spherical hot- and cool-spots in a warm background to mimic a typical human cerebral FDG PET scan was scanned for a variety of time durations (30, 15, 5, 1 min). Only for the 1-minute frame (total counts 2D:6M, 3D:30M) is there an advantage to using 3D mode; for the longer frames which are more typical of a human FDG protocol, the reliability for extracting regions-of-interest is the same for either mode while 2D mode shows better quantitative accuracy
Zotero Collections:

This article examines the lay meditation movement occurring in contemporary Buddhism in Sri Lanka. The lay meditation movement represents a different perspective from the nationalistic Sinhala Buddhism that has dominated the discourse in the wake of the intractable ethnic conflict in the country. The lay meditation movement reflects the contemporary ferment in Buddhist discourse among the laity. One of the key themes in this movement is the privileging of experience because it gives the lay groups authority to challenge contemporary orthodoxy and it has empowered a new class of spiritual leaders, the lay gurus. Paraphrasing Stirrat, we can say that these lay gurus are leading the lay meditation movement towards ‘a series of different interpretations of what it means’ to be a Buddhist today. In its overall effect the lay meditation movement not only reconstructs what it means to be a Buddhist today but also points in the direction of establishing new forms of sectarianism that could be considered to be ‘new religious movements’ under the umbrella of Buddhism.

We present a novel data smoothing and analysis framework for cortical thickness data defined on the brain cortical manifold. Gaussian kernel smoothing, which weights neighboring observations according to their 3D Euclidean distance, has been widely used in 3D brain images to increase the signal-to-noise ratio. When the observations lie on a convoluted brain surface, however, it is more natural to assign the weights based on the geodesic distance along the surface. We therefore develop a framework for geodesic distance-based kernel smoothing and statistical analysis on the cortical manifolds. As an illustration, we apply our methods in detecting the regions of abnormal cortical thickness in 16 high functioning autistic children via random field based multiple comparison correction that utilizes the new smoothing technique.
Zotero Collections:

Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.
Zotero Collections:

In rodents, theta rhythm has been linked to the hippocampal formation, as well as other regions, including the anterior cingulate cortex (ACC). To test the role of the ACC in theta rhythm, concurrent measurements of brain electrical activity (EEG) and glucose metabolism (PET) were performed in 29 subjects at baseline. EEG data were analyzed with a source localization technique that enabled voxelwise correlations of EEG and PET data. For theta, but not other bands, the rostral ACC (Brodmann areas 24/32) was the largest cluster with positive correlations between current density and glucose metabolism. Positive correlations were also found in right fronto-temporal regions. In control but not depressed subjects, theta within ACC and prefrontal/orbitofrontal regions was positively correlated. The results reveal a link between theta and cerebral metabolism in the ACC as well as disruption of functional connectivity within frontocingulate pathways in depression.
Zotero Collections:

Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan-rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than 5 min apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data.
Zotero Collections:

Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Zotero Collections:

Neurosurgical treatment of psychiatric disorders has been influenced by evolving neurobiological models of symptom generation. The advent of functional neuroimaging and advances in the neurosciences have revolutionized understanding of the functional neuroanatomy of psychiatric disorders. This article reviews neuroimaging studies of depression from the last 3 decades and describes an emerging neurocircuitry model of mood disorders, focusing on critical circuits of cognition and emotion, particularly those networks involved in the regulation of evaluative, expressive and experiential aspects of emotion. The relevance of this model for neurotherapeutics is discussed, as well as the role of functional neuroimaging of psychiatric disorders.
Zotero Collections:

Recent years have seen an explosion of interest in using neural oscillations to characterize the mechanisms supporting cognition and emotion. Oftentimes, oscillatory activity is indexed by mean power density in predefined frequency bands. Some investigators use broad bands originally defined by prominent surface features of the spectrum. Others rely on narrower bands originally defined by spectral factor analysis (SFA). Presently, the robustness and sensitivity of these competing band definitions remains unclear. Here, a Monte Carlo-based SFA strategy was used to decompose the tonic ("resting" or "spontaneous") electroencephalogram (EEG) into five bands: delta (1-5Hz), alpha-low (6-9Hz), alpha-high (10-11Hz), beta (12-19Hz), and gamma (>21Hz). This pattern was consistent across SFA methods, artifact correction/rejection procedures, scalp regions, and samples. Subsequent analyses revealed that SFA failed to deliver enhanced sensitivity; narrow alpha sub-bands proved no more sensitive than the classical broadband to individual differences in temperament or mean differences in task-induced activation. Other analyses suggested that residual ocular and muscular artifact was the dominant source of activity during quiescence in the delta and gamma bands. This was observed following threshold-based artifact rejection or independent component analysis (ICA)-based artifact correction, indicating that such procedures do not necessarily confer adequate protection. Collectively, these findings highlight the limitations of several commonly used EEG procedures and underscore the necessity of routinely performing exploratory data analyses, particularly data visualization, prior to hypothesis testing. They also suggest the potential benefits of using techniques other than SFA for interrogating high-dimensional EEG datasets in the frequency or time-frequency (event-related spectral perturbation, event-related synchronization/desynchronization) domains.
Zotero Collections:

The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64-66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease>maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease>maintain) and monotonic changes in EDA (increase>maintain>decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Zotero Collections:

Diffusion tensor imaging (DTI) plays a key role in analyzing the physical structures of biological tissues, particularly in reconstructing fiber tracts of the human brain in vivo. On the one hand, eigenvalues of diffusion tensors (DTs) estimated from diffusion weighted imaging (DWI) data usually contain systematic bias, which subsequently biases the diffusivity measurements popularly adopted in fiber tracking algorithms. On the other hand, correctly accounting for the spatial information is important in the construction of these diffusivity measurements since the fiber tracts are typically spatially structured. This paper aims to establish test-based approaches to identify anisotropic water diffusion areas in the human brain. These areas in turn indicate the areas passed by fiber tracts. Our proposed test statistic not only takes into account the bias components in eigenvalue estimates, but also incorporates the spatial information of neighboring voxels. Under mild regularity conditions, we demonstrate that the proposed test statistic asymptotically follows a $\chi^2$ distribution under the null hypothesis. Simulation and real DTI data examples are provided to illustrate the efficacy of our proposed methods.
Zotero Collections:

In order to gain a deeper understanding of the mindfulness construct and the mental health benefits associated with mindfulness-based programmes, the relation between mindfulness and its proposed core component attention was studied. Buddhist and Western mindfulness meditators were compared with non-meditators on tasks of sustained (SART) and executive (the Stroop Task) attention. Relations between self-reported mindfulness (FFMQ) and sustained and executive attention were also analysed. No significant differences were found between meditators and non-meditators either in sustained or executive attention. High scores on the FFMQ total scale and on Describe were related to fewer SART errors. High scores on Describe were also related to low Stroop interference. Mindfulness meditators may have an increased awareness of internal processes and the ability to quickly attend to them but this type of refined attentional ability does not seem to be related to performance on attention tests requiring responses to external targets.

Studies have suggested that the default mode network is active during mind wandering, which is often experienced intermittently during sustained attention tasks. Conversely, an anticorrelated task-positive network is thought to subserve various forms of attentional processing. Understanding how these two systems work together is central for understanding many forms of optimal and sub-optimal task performance. Here we present a basic model of naturalistic cognitive fluctuations between mind wandering and attentional states derived from the practice of focused attention meditation. This model proposes four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. People who train in this style of meditation cultivate their abilities to monitor cognitive processes related to attention and distraction, making them well suited to report on these mental events. Fourteen meditation practitioners performed breath-focused meditation while undergoing fMRI scanning. When participants realized their mind had wandered, they pressed a button and returned their focus to the breath. The four intervals above were then constructed around these button presses. We hypothesized that periods of mind wandering would be associated with default mode activity, whereas cognitive processes engaged during awareness of mind wandering, shifting of attention and sustained attention would engage attentional subnetworks. Analyses revealed activity in brain regions associated with the default mode during mind wandering, and in salience network regions during awareness of mind wandering. Elements of the executive network were active during shifting and sustained attention. Furthermore, activations during these cognitive phases were modulated by lifetime meditation experience. These findings support and extend theories about cognitive correlates of distributed brain networks.
Zotero Collections:

Pages

  • Page
  • of 2