Displaying 1 - 4 of 4
OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees.
METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine.
RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine.
CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:
- Contemplation by Applied Subject,
- Psychiatry and Contemplation,
- Medical Research on Contemplative Practice,
- Mindfulness-Based Stress Reduction / Cognitive Therapy,
- Psychotherapy and Contemplation,
- Health Care and Contemplation,
- Neuroscience and Contemplation,
- Physiology and Contemplation,
- Science and Contemplation
OBJECTIVE: The underlying changes in biological processes that are associated with reported changes in mental and physical health in response to meditation have not been systematically explored. We performed a randomized, controlled study on the effects on brain and immune function of a well-known and widely used 8-week clinical training program in mindfulness meditation applied in a work environment with healthy employees.
METHODS: We measured brain electrical activity before and immediately after, and then 4 months after an 8-week training program in mindfulness meditation. Twenty-five subjects were tested in the meditation group. A wait-list control group (N = 16) was tested at the same points in time as the meditators. At the end of the 8-week period, subjects in both groups were vaccinated with influenza vaccine.
RESULTS: We report for the first time significant increases in left-sided anterior activation, a pattern previously associated with positive affect, in the meditators compared with the nonmeditators. We also found significant increases in antibody titers to influenza vaccine among subjects in the meditation compared with those in the wait-list control group. Finally, the magnitude of increase in left-sided activation predicted the magnitude of antibody titer rise to the vaccine.
CONCLUSIONS: These findings demonstrate that a short program in mindfulness meditation produces demonstrable effects on brain and immune function. These findings suggest that meditation may change brain and immune function in positive ways and underscore the need for additional research.
Zotero Collections:
BACKGROUND: EEG alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The hypothesis that the thalamus serves as a neuronal oscillator of alpha rhythms has been supported by studies in animals, but only minimally by studies in humans.
METHODS: In the current study, PET-derived measures of regional glucose metabolism, EEG, and structural MRI were obtained from each participant to assess the relation between thalamic metabolic activity and alpha power in depressed patients and healthy controls. The thalamus was identified and drawn on each subject's MRI. The MRI was then co-registered to the corresponding PET scan and metabolic activity from the thalamus extracted. Thalamic activity was then correlated with a 30-min aggregated average of alpha EEG power.
RESULTS: Robust inverse correlations were observed in the control data, indicating that greater thalamic metabolism is correlated with decreased alpha power. No relation was found in the depressed patient data.
CONCLUSIONS: The results are discussed in the context of a possible abnormality in thalamocortical circuitry associated with depression.
Zotero Collections:
BACKGROUND: Recent studies have highlighted the role of right-sided anterior temporal and prefrontal activation during anxiety, yet no study has been performed with social phobics that assesses regional brain and autonomic function. This study compared electroencephalograms (EEGs) and autonomic activity in social phobics and controls while they anticipated making a public speech.
METHODS: Electroencephalograms from 14 scalp locations, heart rate, and blood pressure were recorded while 18 DSM-IV social phobics and 10 controls anticipated making a public speech, as well as immediately after the speech was made. Self-reports of anxiety and affect were also obtained.
RESULTS: Phobics showed a significantly greater increase in anxiety and negative affect during the anticipation condition compared with controls. Heart rate was elevated in the phobics relative to the controls in most conditions. Phobics showed a marked increase in right-sided activation in the anterior temporal and lateral prefrontal scalp regions. These heart rate and EEG changes together accounted for > 48% of the variance in the increase in negative affect during the anticipation phase.
CONCLUSIONS: These findings support the hypothesis of right-sided anterior cortical activation during anxiety and indicate that the combination of EEG and heart rate changes during anticipation account for substantial variance in reported negative affect.
Zotero Collections: