Skip to main content Skip to search
Displaying 1 - 22 of 22
Functional neuroimaging studies have implicated the fusiform gyri (FG) in structural encoding of faces, while event-related potential (ERP) and magnetoencephalography studies have shown that such encoding occurs approximately 170 ms poststimulus. Behavioral and functional neuroimaging studies suggest that processes involved in face recognition may be strongly modulated by socially relevant information conveyed by faces. To test the hypothesis that affective information indeed modulates early stages of face processing, ERPs were recorded to individually assessed liked, neutral, and disliked faces and checkerboard-reversal stimuli. At the N170 latency, the cortical three-dimensional distribution of current density was computed in stereotactic space using a tomographic source localization technique. Mean activity was extracted from the FG, defined by structure-probability maps, and a meta-cluster delineated by the coordinates of the voxel with the strongest face-sensitive response from five published functional magnetic resonance imaging studies. In the FG, approximately 160 ms poststimulus, liked faces elicited stronger activation than disliked and neutral faces and checkerboard-reversal stimuli. Further, confirming recent results, affect-modulated brain electrical activity started very early in the human brain (approximately 112 ms). These findings suggest that affective features conveyed by faces modulate structural face encoding. Behavioral results from an independent study revealed that the stimuli were not biased toward particular facial expressions and confirmed that liked faces were rated as more attractive. Increased FG activation for liked faces may thus be interpreted as reflecting enhanced attention due to their saliency.
Zotero Collections:

<p>Twenty-six younger (ages 18–36 years) and 19 older (ages 60–88 years) healthy right-handed men and women were tested for interhemispheric transfer by using visual evoked potentials lo laterally presented checkerboards. Interhemispheric transfer time (IHTT) was estimated by subtracting latencies for both P100 and N160 peaks of the waveform contralateral to the stimulus from the waveform ipsilateral to the stimulus for homologous sites. The quality of interhemispheric transfer was estimated by comparing peak-to-peak amplitudes for homologous sites. IHTT did not change across age, but there was a suppression of the waveform over the indirectly stimulated hemisphere in the older participants. The significance of this finding for age-related changes in functions mediated by the corpus callosum is discussed.</p>
Zotero Collections:

Considerable research has disclosed how cognitive reappraisals and the modulation of emotional responses promote successful emotion regulation. Less research has examined how the early processing of emotion-relevant stimuli may create divergent emotional response consequences. Mindfulness—a receptive, non-evaluative form of attention—is theorized to foster emotion regulation, and the present study examined whether individual differences in mindfulness would modulate neural responses associated with the early processing of affective stimuli. Focus was on the late positive potential (LPP) of the event-related brain potential to visual stimuli varying in emotional valence and arousal. This study first found, replicating past research, that high arousal images, particularly of an unpleasant type, elicited larger LPP responses. Second, the study found that more mindful individuals showed lower LPP responses to high arousal unpleasant images, even after controlling for trait attentional control. Conversely, two traits contrasting with mindfulness—neuroticism and negative affectivity—were associated with higher LPP responses to high arousal unpleasant images. Finally, mindfulness was also associated with lower LPP responses to motivationally salient pleasant images (erotica). These findings suggest that mindfulness modulates neural responses in an early phase of affective processing, and contribute to understanding how this quality of attention may promote healthy emotional functioning.

Two groups of subjects classified as high vs. low in the need for power (n power) were assessed for augmenting versus reducing in the event-related potential (ERP) elicited by neutral and power-related words. Words at four different intensity levels in each of these two classes were randomly presented and ERPs in response to each word class at each of the four intensity levels were computed from EEG recorded at Fz. The results indicated that the two groups responded differentially to the power-related vs. neutral words. HIgh n power subjects showed reduction in response to both power-related and neutral words while low n power subjects showed augmentation in response to the power-related words.
Zotero Collections:

Two groups of subjects classified as high vs. low in the need for power (n power) were assessed for augmenting versus reducing in the event-related potential (ERP) elicited by neutral and power-related words. Words at four different intensity levels in each of these two classes were randomly presented and ERPs in response to each word class at each of the four intensity levels were computed from EEG recorded at Fz. The results indicated that the two groups responded differentially to the power-related vs. neutral words. HIgh n power subjects showed reduction in response to both power-related and neutral words while low n power subjects showed augmentation in response to the power-related words.

<p>In two prior studies, we investigated the neural mechanisms of spatial attention using a combined event-related potential (ERP) and positron emission tomography (PET) approach (Heinze et al. [1994]: Nature 392:543-546; Mangun et al. [1997]: Hum Brain Mapp 5:273-279). Neural activations in extrastriate cortex were observed in the PET measures for attended stimuli, and these effects were related to attentional modulations in the ERPs at specific latencies. The present study used functional magnetic resonance imaging (fMRI) and ERPs in single subjects to investigate the intersubject variability in extrastriate spatial attention effects, and to qualitatively compare this to variations in ERP attention effects. Activations in single subjects replicated our prior group-averaged PET findings, showing attention-related increases in blood flow in the posterior fusiform and middle occipital gyri in the hemisphere contralateral to attended visual stimuli. All subjects showed attentional modulations of the occipital P1 component of the ERPs. These findings in single subjects demonstrate the consistency of extrastriate attention effects, and provide information about the feasibility of this approach for integration of electrical and functional imaging data.</p>
Zotero Collections:

<p>Examined whether children with dyslexia (DYS) differ from matched controls on visual evoked potential measures of interhemispheric transfer time (IHTT). 20 right-handed boys (aged 9–12 yrs), 10 with DYS and 10 with normal reading ability, were selected to participate based on a battery of neuropsychological and reading tests. Checkerboard flashes were presented to Ss hemiretinally while evoked responses were recorded from right and left side occipital scalp locations. IHTT was computed separately in response to right and left visual field presentations. Ss with DYS were found to have faster IHTT from right-to-left hemisphere and slower IHTT from left-to-right hemisphere compared with controls. Evoked potential measures of IHTT accounted for significant variance in measures of reading and related cognitive skills.</p>
Zotero Collections:

BACKGROUND: Two core characteristics of pathologic fear are its rapid onset and resistance to cognitive regulation. We hypothesized that activation of the amygdala early in the presentation of fear-relevant visual stimuli would distinguish phobics from nonphobics. METHODS: Chronometry of amygdala activation to phobia-relevant pictures was assessed in 13 spider phobics and 14 nonphobics using functional magnetic resonance imaging (fMRI). RESULTS: Blood oxygen level-dependent (BOLD) responses in the amygdala early in picture processing consistently differentiated between phobic and nonphobic subjects, as well as between phobogenic and nonphobogenic stimuli among phobics. Furthermore, amygdalar BOLD responses associated with timing but not magnitude of activation predicted affective responses to phobogenic stimuli. Computational modeling procedures were used to identify patterns of neural activation in the amygdala that could yield the observed BOLD data. These data suggest that phobic responses were characterized by strong but brief amygdala responses, whereas nonphobic responses were weaker and more sustained. CONCLUSIONS: Results are discussed in the context of the amygdala's role in rapid threat detection and the vigilance-avoidance hypothesis of anxiety. These data highlight the importance of examining the neural substrates of the immediate impact of phobogenic stimuli for understanding pathological fear.
Zotero Collections:

High vs. low scorers on the Beck Depression Inventory (BDI) were compared on measures of resting EEG activation asymmetry from frontal and parietal brain regions. Depressed subjects showed greater relative right frontal activation compared with nondepressed subjects. Parietal asymmetry did not distinguish between the groups. These data support the hypothesis of right hemisphere hyperactivation in the frontal region of depressed individuals and are consistent with the growing body of literature which suggests that the left and right frontal regions may be differentially specialized for particular positive and negative affects.
Zotero Collections:

Individuals differ dramatically in the quality and intensity of their response to affectively evocative stimuli. On the basis of prior theory and research, we hypothesized that these individual differences are related to variation in activation of the left and right frontal brain regions. We recorded baseline brain electrical activity from subjects on two occasions 3 weeks apart. Immediately following the second recording, subjects were exposed to brief positive and negative emotional film clips. For subjects whose frontal asymmetry was stable across the 3-week period, greater left frontal activation was associated with reports of more intense positive affect in response to the positive films, whereas greater right frontal activation was associated with more intense reports of negative affect in response to the negative film clips. The methodological and theoretical implications of these data are discussed.
Zotero Collections:

Developments in technologic and analytical procedures applied to the study of brain electrical activity have intensified interest in this modality as a means of examining brain function. The impact of these new developments on traditional methods of acquiring and analyzing electroencephalographic activity requires evaluation. Ultimately, the integration of the old with the new must result in an accepted standardized methodology to be used in these investigations. In this paper, basic procedures and recent developments involved in the recording and analysis of brain electrical activity are discussed and recommendations are made, with emphasis on psychophysiological applications of these procedures.
Zotero Collections:

Research on the anatomical bases of interhemispheric interaction, including individual differences in corpus callosum (CC) anatomy, is reviewed. These anatomical findings form the basis for the discussion of two major themes. The first considers interhemispheric transfer time (IHTT) and related issues. These include varieties of IHTT and possible directional asymmetries of IHTT. Evidence suggests that pathological variations in IHTT may have cognitive consequences. The second involves conditions under which interhemispheric interaction is necessary and beneficial. The data suggest that when both hemispheres have some competence at a difficult task, there is a benefit to interhemispheric interaction. The role of the CC in the dynamic distribution of attention may be particularly relevant to this advantage. Throughout the article reference is made to individual differences and developmental changes associated with interhemispheric interaction.
Zotero Collections:

This research assessed whether individual differences in anterior brain asymmetry are linked to differences in basic dimensions of emotion. In each of 2 experimental sessions, separated by 3 weeks, resting electroencephalogram (EEG) activity was recorded from female adults during 8 60-s baselines. Mean alpha power asymmetry across both sessions was extracted in mid-frontal and anterior temporal sites. Across both regions, groups demonstrating stable and extreme relative left anterior activation reported increased generalized positive affect (PA) and decreased generalized negative affect (NA) compared with groups demonstrating stable and extreme relative right anterior activation. Additional correlational analyses revealed robust relations between anterior asymmetry and PA and NA, particularly among subjects who demonstrated stable patterns of EEG activation over time. Anterior asymmetry was unrelated to individual differences in generalized reactivity.
Zotero Collections:

Baseline resting electroencephalogram activity was recorded with 3 different reference montages from 15 clinically depressed and 13 control subjects. Power in all frequency bands was extracted by fast Fourier transformation. There was a significant Group X Hemisphere interaction in the mid-frontal region, for the alpha band power only. Depressed subjects had less left-sided activation (i.e., more alpha activity) than did normal control subjects. This pattern of diminished left-sided frontal activation is interpreted as indicating a deficit in approach mechanisms in depressed subjects.
Zotero Collections:

The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.
Zotero Collections:

<p>Subregional analyses of the hippocampus have suggested a selective role for the CA1 subregion in intermediate/long-term spatial memory and consolidation, but not short-term acquisition or encoding processes. It remains unclear how the direct cortical projection to CA1 via the perforant path (pp) contributes to these CA1-dependent processes. It has been suggested that dopamine selectively modulates the pp projection to CA1 while having little to no effect on the Schaffer collateral (SC) projection to CA1. This series of behavioral and electrophysiological experiments takes advantage of this pharmacological dissociation to demonstrate that the direct pp inputs to CA1 are critical in CA1-dependent intermediate-term retention and retrieval function. Here we demonstrate that local infusion of the nonselective dopamine agonist, apomorphine (10, 15 microg), into the CA1 subregion of awake animals produces impairments in between-day retention and retrieval, sparing within-day encoding of a modified Hebb-Williams maze and contextual conditioning of fear. In contrast, apomorphine produces no deficits when infused into the CA3 subregion. To complement the behavioral analyses, electrophysiological data was collected. In anesthetized animals, local infusion of the same doses of apomorphine significantly modifies evoked responses in the distal dendrites of CA1 following angular bundle stimulation, but produces no significant effects in the more proximal dendritic layer following stimulation of the SC. These results support a modulatory role for dopamine in the EC-CA1, but not CA3-CA1 circuitry, and suggest the possibility of a more fundamental role for EC-CA1 synaptic transmission in terms of intermediate-term, but not short-term spatial memory.</p>
Zotero Collections:

Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.
Zotero Collections:

We investigated the top-down influence of working memory (WM) maintenance on feedforward perceptual processing within occipito-temporal face processing structures. During event-related potential (ERP) recordings, subjects performed a delayed-recognition task requiring WM maintenance of faces or houses. The face-sensitive N170 component elicited by delay-spanning task-irrelevant grayscale noise probes was examined. If early feedforward perceptual activity is biased by maintenance requirements, the N170 ERP component elicited by probes should have a greater N170 amplitude response during face relative to house WM trials. Consistent with this prediction, N170 elicited by probes presented at the beginning, middle, and end of the delay interval was greater in amplitude during face relative to house WM. Thus, these results suggest that WM maintenance demands may modulate early feedforward perceptual processing for the entirety of the delay duration. We argue based on these results that temporally early biasing of domain-specific perceptual processing may be a critical mechanism by which WM maintenance is achieved.
Zotero Collections:

Rats were implanted bilaterally with cannulae into the dorsal hippocampus and trained in a Pavlovian fear-conditioning paradigm. Four groups of rats were infused intra-cranially with 1-(5'-isoquinolinesulfonyl)-2-methylpiperazine (H7-dihydrochloride), a potent inhibitor of both protein kinase C (PKC) and cAMP-dependent protein kinase (PKA), at different time intervals in order to examine their involvement in the acquisition and consolidation of contextual fear memory. We demonstrate a significant consolidation deficit of long-term contextual fear-conditioning memory that is maximal when PKA and PKC are inhibited at 90 min post-training. These results suggest the existence of a critical time window, during which these enzymes must be activated for the consolidation of long-term memories.
Zotero Collections:

Spatial working memory is a cognitive brain mechanism that enables the temporary maintenance and manipulation of spatial information. Recent neuroimaging and behavioral studies have led to the proposal that directed spatial attention is the mechanism by which location information is maintained in spatial working memory. Yet it is unclear whether attentional involvement is required throughout the period of active maintenance or is only invoked during discrete task-phases such as mnemonic encoding. In the current study, we aimed to track the time-course of attentional involvement during spatial working memory by recording event-related brain potentials (ERPs) from healthy volunteers. In Experiment 1, subjects performed a delayed-recognition task. Each trial began with the presentation of a brief stimulus (S1) that indicated the relevant location that subjects were to maintain in working memory. A 4.8-5.3 sec delay interval followed during which a single task-irrelevant probe was presented. The delay interval concluded with a test item (S2) to which subjects made a response indicating whether the S2-location was the same as the S1-memory location. To determine if attention was differentially engaged during discrete phases of the trial, task-irrelevant probes were presented early (400-800 msec following S1-offset) or late (2600-3000 msec following S1-offset) during the delay interval. Sensory-evoked ERPs (P1 and N1) elicited by these irrelevant probes showed attention-like modulations with greater amplitude responses for probes occurring at the S1-memory locations in comparison to probes presented at other locations. This pattern was obtained for both early- and late-delay probes. Probe-evoked activity during delayed-recognition trials was similar to activity observed when spatial attention was explicitly focused on a location in visual space (Experiment 2). These results are consistent with a model of spatial working memory in which perceptual level selective attention is utilized throughout the entire period of active maintenance to keep relevant spatial information in mind.
Zotero Collections:

Four experiments testing right-handed adult males examined interhemispheric transfer time (IHTT) estimation with visual evoked potentials (EPs) elicited in response to hemiretinal presentations of checkerboard-flash stimuli. Experiment 1 was a study of the relation between reaction time (RT) and EP measures of IHTT. EP measures provided more valid estimates than RT measures because more subjects showed IHTT in the direction of anatomical prediction. Experiment 2 showed that EPs derived from lateral occipital sites provided more valid and longer estimates of IHTT compared with EPs from medial occipital sites. Experiment 3 showed no difference between random versus blocked hemiretinal stimuli. Experiment 4 showed that IHTT derived with a linked-ears reference provided more valid estimates than IHTT derived with a mid-frontal reference and that small changes in stimulus eccentricity did not influence IHTT. The findings of these experiments indicate that noninvasive estimates of visual IHTT can be obtained in humans.
Zotero Collections:

Working memory (WM) representations serve as templates that guide behavior, but the neural basis of these templates remains elusive. We tested the hypothesis that WM templates are maintained by biasing activity in sensoriperceptual neurons that code for features of items being held in memory. Neural activity was recorded using event-related potentials (ERPs) as participants viewed a series of faces and responded when a face matched a target face held in WM. Our prediction was that if activity in neurons coding for the features of the target is preferentially weighted during maintenance of the target, then ERP activity evoked by a nontarget probe face should be commensurate with the visual similarity between target and probe. Visual similarity was operationalized as the degree of overlap in visual features between target and probe. A face-sensitive ERP response was modulated by target-probe similarity. Amplitude was largest for probes that were similar to the target, and decreased monotonically as a function of decreasing target-probe similarity. These results indicate that neural activity is weighted in favor of visual features that comprise an actively held memory representation. As such, our findings support the notion that WM templates rely on neural populations involved in forming percepts of memory items.
Zotero Collections: