Skip to main content Skip to search
Displaying 1 - 5 of 5
The amygdalae are important, if not critical, brain regions for many affective, attentional and memorial processes, and dysfunction of the amygdalae has been a consistent finding in the study of clinical depression. Theoretical models of the functional neuroanatomy of both normal and psychopathological affective processes which posit cortical hemispheric specialization of functions have been supported by both lesion and functional neuroimaging studies in humans. Results from human neuroimaging studies in support of amygdalar hemispheric specialization are inconsistent. However, recent results from human lesion studies are consistent with hemispheric specialization. An important, yet largely ignored, feature of the amygdalae in the primate brain--derived from both neuroanatomical and electrophysiological data--is that there are virtually no direct interhemispheric connections via the anterior commissure (AC). This feature stands in stark contrast to that of the rodent brain wherein virtually all amygdalar nuclei have direct interhemispheric connections. We propose this feature of the primate brain, in particular the human brain, is a result of influences from frontocortical hemispheric specialization which have developed over the course of primate brain evolution. Results consistent with this notion were obtained by examining the nature of human amygdalar interhemispheric connectivity using both functional magnetic resonance imaging (FMRI) and positron emission tomography (PET). We found modest evidence of amygdalar interhemispheric functional connectivity in the non-depressed brain, whereas there was strong evidence of functional connectivity in the depressed brain. We interpret and discuss the nature of this connectivity in the depressed brain in the context of dysfunctional frontocortical-amygdalar interactions which accompany clinical depression.
Zotero Collections:

We have studied a number of long-term meditators in previous studies. The purpose of this study was to determine if there are differences in baseline brain function of experienced meditators compared to non-meditators. All subjects were recruited as part of an ongoing study of different meditation practices. We evaluated 12 advanced meditators and 14 non-meditators with cerebral blood flow (CBF) SPECT imaging at rest. Images were analyzed with both region of interest and statistical parametric mapping. The CBF of long-term meditators was significantly higher (p < .05) compared to non-meditators in the prefrontal cortex, parietal cortex, thalamus, putamen, caudate, and midbrain. There was also a significant difference in the thalamic laterality with long-term meditators having greater asymmetry. The observed changes associated with long-term meditation appear in structures that underlie the attention network and also those that relate to emotion and autonomic function.

OBJECTIVE: This study was undertaken to identify brain structures associated with emotion in normal elderly subjects. METHOD: Eight normal subjects aged 55-78 years were shown film clips intended to provoke the emotions of happiness, fear, or disgust as well as a neutral state. During emotional activation, regional cerebral blood flow was measured with the use of [15O]H2O positron emission tomography imaging, and subjective emotional responses were recorded. Data were analyzed by subtracting the values during the neutral condition from the values in the various emotional activations. RESULTS: The stimuli produced a general activation in visual pathways that included the primary and secondary visual cortex, involving regions associated with object and spatial recognition. In addition, the specific emotions produced different regional limbic activations, which suggests that different pathways may be used for different types of emotional stimuli. CONCLUSIONS: Emotional activation in normal elderly subjects was associated with increases in blood flow in limbic and paralimbic brain structures. Brain activation may be specific to the emotion being elicited but probably involves complex sensory, association, and memory circuitry. Further studies are needed to identify activations that are specific for emotion.
Zotero Collections:

Substantial evidence suggests that a key distinction in the classification of human emotion is that between an appetitive motivational system association with positive or pleasant emotion and an aversive motivational system associated with negative or unpleasant emotion. To explore the neural substrates of these two systems, 12 healthy women viewed sets of pictures previously demonstrated to elicit pleasant, unpleasant and neutral emotion, while positron emission tomographic (PET) measurements of regional cerebral blood flow were obtained. Pleasant and unpleasant emotions were each distinguished from neutral emotion conditions by significantly increased cerebral blood flow in the vicinity of the medial prefrontal cortex (Brodmann's area 9), thalamus, hypothalamus and midbrain (P < 0.005). Unpleasant was distinguished from neutral or pleasant emotion by activation of the bilateral occipito-temporal cortex and cerebellum, and left parahippocampal gyrus, hippocampus and amygdala (P < 0.005). Pleasant was also distinguished from neutral but not unpleasant emotion by activation of the head of the left caudate nucleus (P < 0.005). These findings are consistent with those from other recent PET studies of human emotion and demonstrate that there are both common and unique components of the neural networks mediating pleasant and unpleasant emotion in healthy women.
Zotero Collections: