Skip to main content Skip to search
Displaying 51 - 75 of 98

Pages

  • Page
  • of 4
The present study investigated the premise that individual differences in autonomic physiology could be used to specify the nature and consequences of information processing taking place in medial prefrontal regions during cognitive reappraisal of unpleasant pictures. Neural (blood oxygenation level-dependent functional magnetic resonance imaging) and autonomic (electrodermal [EDA], pupil diameter, cardiac acceleration) signals were recorded simultaneously as twenty-six older people (ages 64-66 years) used reappraisal to increase, maintain, or decrease their responses to unpleasant pictures. EDA was higher when increasing and lower when decreasing compared to maintaining. This suggested modulation of emotional arousal by reappraisal. By contrast, pupil diameter and cardiac acceleration were higher when increasing and decreasing compared to maintaining. This suggested modulation of cognitive demand. Importantly, reappraisal-related activation (increase, decrease>maintain) in two medial prefrontal regions (dorsal medial frontal gyrus and dorsal cingulate gyrus) was correlated with greater cardiac acceleration (increase, decrease>maintain) and monotonic changes in EDA (increase>maintain>decrease). These data indicate that these two medial prefrontal regions are involved in the allocation of cognitive resources to regulate unpleasant emotion, and that they modulate emotional arousal in accordance with the regulatory goal. The emotional arousal effects were mediated by the right amygdala. Reappraisal-related activation in a third medial prefrontal region (subgenual anterior cingulate cortex) was not associated with similar patterns of change in any of the autonomic measures, thus highlighting regional specificity in the degree to which cognitive demand is reflected in medial prefrontal activation during reappraisal.
Zotero Collections:

<p>We conducted two fMRI studies to investigate the sensitivity of delay-period activity to changes in memory load during a delayed-recognition task for faces. In Experiment 1, each trial began with the presentation of a memory array consisting of one, two, or three faces that lasted for 3 sec. A 15-sec delay period followed during which no stimuli were present. The delay interval concluded with a one-face probe to which subjects made a button press response indicating whether this face was part of the memory array. Experiment 2 was similar in design except that the delay period was lengthened to 24 sec, and the memory array consisted of only one or three faces. We hypothesized that memory maintenance processes that spanned the delay interval would be revealed by their sensitivity to memory load. Long delay intervals were employed to temporally dissociate phasic activity engendered by the memory array from sustained activity reflecting maintenance. Regions of interest (ROIs) were defined anatomically for the superior frontal gyri (SFG), middle frontal gyri (MFG), and inferior frontal gyri (IFG), intraparietal sulci (IPS), and fusiform gyri (FFG) on a subject-by-subject basis. The mean time course of activity was determined for all voxels within these regions and for that subset of voxels within each ROI that correlated significantly with an empirically determined reference waveform. In both experiments, memory load significantly influenced activation 6--9 sec following the onset of the memory array with larger amplitude responses for higher load levels. Responses were greatest within MFG, IPS, and FFG. In both experiments, however, these load-sensitive differences declined over successive time intervals and were no longer significant at the end of the delay interval. Although insensitive to our load manipulation, sustained activation was present at the conclusion of the delay interval within MFG and other prefrontal regions. IPS delay activity returned to prestimulus baseline levels prior to the end of the delay period in Experiment 2, but not in Experiment 1. Within FFG, delay activity returned to prestimulus baseline levels prior to the conclusion of the delay interval in both experiments. Thus, while phasic processes engendered by the memory array were strongly affected by memory load, no evidence for load-sensitive delay-spanning maintenance processes was obtained.</p>
Zotero Collections:

A growing body of literature has documented the differential role of the frontal regions of the two cerebral hemispheres in certain positive and negative affective processes. This corpus of evidence has led to the hypothesis of a possible differential effect of diazepam on asymmetry of frontal activation. To examine this question, nine infant rhesus monkeys were tested on two occasions during which brain electrical activity was recorded from left and right frontal and parietal scalp regions. During one session, recordings were obtained under a baseline restraint condition and then after an injection of diazepam (1 mg/kg). In the other session, following the same baseline restraint condition, a vehicle injection was given. In response to diazepam, the animals showed an asymmetrical decrease in power in the 4-8 Hz frequency band, which was most pronounced in the left frontal region. No change in electroencephalogram (EEG) activity was observed in response to vehicle. Asymmetry in parietal EEG activity was also unchanged by diazepam. Diazepam also produced overall reductions in power across different frequency bands in both frontal and parietal regions. Good test-retest stability of EEG measures of activation asymmetry was also found between the two testing sessions separated by three months. The possible proximal cause of the asymmetrical change in frontal brain electrical activity in response to diazepam, as well as the implications of these findings for understanding the mechanism of action of benzodiazepines are discussed.
Zotero Collections:

Despite the vast literature that has implicated asymmetric activation of the prefrontal cortex in approach-withdrawal motivation and emotion, no published reports have directly explored the neural correlates of well-being. Eighty-four right-handed adults (ages 57-60) completed self-report measures of eudaimonic well-being, hedonic well-being, and positive affect prior to resting electroencephalography. As hypothesized, greater left than right superior frontal activation was associated with higher levels of both forms of well-being. Hemisphere-specific analyses documented the importance of goal-directed approach tendencies beyond those captured by approach-related positive affect for eudaimonic but not for hedonic well-being. Appropriately engaging sources of appetitive motivation, characteristic of higher left than right baseline levels of prefrontal activation, may encourage the experience of well-being.
Zotero Collections:

A chief goal of this research was to determine whether stimuli and events known to enhance smoking motivation also influence a physiological variable with the potential to index approach motivation. Asymmetry of electroencephalographic (EEG) activity across the frontal regions of the 2 hemispheres (left minus right hemisphere activation) was used to index approach motivation. In theory, if EEG asymmetry sensitively indexes approach dispositions, it should be influenced by manipulations known to affect smoking motivation, that is, exposure to smoking cues and tobacco deprivation. Seventy-two smokers participated in this research and were selectively exposed to a smoking-anticipation condition (cigarettes plus expectation of imminent smoking) following either 24 hr of tobacco withdrawal or ad libitum smoking. Results indicated that EEG asymmetry was increased by smoking anticipation and that smoking itself reduced EEG asymmetry. Results also suggested that smoking anticipation increased overall (bihemispheric) EEG activation. Results were interpreted in terms of major theories of drug motivation.
Zotero Collections:

Previous studies have documented the positive effects of mindfulness meditation on executive control. What has been lacking, however, is an understanding of the mechanism underlying this effect. Some theorists have described mindfulness as embodying two facets—present moment awareness and emotional acceptance. Here, we examine how the effect of meditation practice on executive control manifests in the brain, suggesting that emotional acceptance and performance monitoring play important roles. We investigated the effect of meditation practice on executive control and measured the neural correlates of performance monitoring, specifically, the error-related negativity (ERN), a neurophysiological response that occurs within 100 ms of error commission. Meditators and controls completed a Stroop task, during which we recorded ERN amplitudes with electroencephalography. Meditators showed greater executive control (i.e. fewer errors), a higher ERN and more emotional acceptance than controls. Finally, mediation pathway models further revealed that meditation practice relates to greater executive control and that this effect can be accounted for by heightened emotional acceptance, and to a lesser extent, increased brain-based performance monitoring.

A growing body of evidence suggests that empathy for pain is underpinned by neural structures that are also involved in the direct experience of pain. In order to assess the consistency of this finding, an image-based meta-analysis of nine independent functional magnetic resonance imaging (fMRI) investigations and a coordinate-based meta-analysis of 32 studies that had investigated empathy for pain using fMRI were conducted. The results indicate that a core network consisting of bilateral anterior insular cortex and medial/anterior cingulate cortex is associated with empathy for pain. Activation in these areas overlaps with activation during directly experienced pain, and we link their involvement to representing global feeling states and the guidance of adaptive behavior for both self- and other-related experiences. Moreover, the image-based analysis demonstrates that depending on the type of experimental paradigm this core network was co-activated with distinct brain regions: While viewing pictures of body parts in painful situations recruited areas underpinning action understanding (inferior parietal/ventral premotor cortices) to a stronger extent, eliciting empathy by means of abstract visual information about the other's affective state more strongly engaged areas associated with inferring and representing mental states of self and other (precuneus, ventral medial prefrontal cortex, superior temporal cortex, and temporo-parietal junction). In addition, only the picture-based paradigms activated somatosensory areas, indicating that previous discrepancies concerning somatosensory activity during empathy for pain might have resulted from differences in experimental paradigms. We conclude that social neuroscience paradigms provide reliable and accurate insights into complex social phenomena such as empathy and that meta-analyses of previous studies are a valuable tool in this endeavor.
Zotero Collections:

<p>Empathy—the ability to share the feelings of others—is fundamental to our emotional and social lives. Previous human imaging studies focusing on empathy for others' pain have consistently shown activations in regions also involved in the direct pain experience, particularly anterior insula and anterior and midcingulate cortex. These findings suggest that empathy is, in part, based on shared representations for firsthand and vicarious experiences of affective states. Empathic responses are not static but can be modulated by person characteristics, such as degree of alexithymia. It has also been shown that contextual appraisal, including perceived fairness or group membership of others, may modulate empathic neuronal activations. Empathy often involves coactivations in further networks associated with social cognition, depending on the specific situation and information available in the environment. Empathy-related insular and cingulate activity may reflect domain-general computations representing and predicting feeling states in self and others, likely guiding adaptive homeostatic responses and goal-directed behavior in dynamic social contexts.</p>
Zotero Collections:

Anxiety is a debilitating symptom of many psychiatric disorders including generalized anxiety disorder, mood disorders, schizophrenia, and autism. Anxiety involves changes in both central and peripheral biology, yet extant functional imaging studies have focused exclusively on the brain. Here we show, using functional brain and cardiac imaging in sequential brain and cardiac magnetic resonance imaging (MRI) sessions in response to cues that predict either threat (a possible shock) or safety (no possibility of shock), that MR signal change in the amygdala and the prefrontal and insula cortices predicts cardiac contractility to the threat of shock. Participants with greater MR signal change in these regions show increased cardiac contractility to the threat versus safety condition, a measure of the sympathetic nervous system contribution to the myocardium. These findings demonstrate robust neural-cardiac coupling during induced anxiety and indicate that individuals with greater activation in brain regions identified with aversive emotion show larger magnitude cardiac contractility increases to threat.
Zotero Collections:

This article reviews the modern literature on two key aspects of the central circuitry of emotion - the prefrontal cortex (PFC) and the amygdala. There are several different functional divisions of the PFC including the dorsolateral, ventromedial and orbitofrontal sectors. Each of these regions plays some role in affective processing that shares the feature of representing affect in the absence of immediate rewards and punishments as well as in different aspects of emotional regulation. The amygdala appears to be crucial for the learning of new stimulus-threat contingencies and also appears to be important in the expression of cue-specific fear. Individual differences in both tonic activation and phasic reactivity in this circuit play an important role in governing affective style. Emphasis is placed upon affective chronometry, or the time course of emotional responding, as a key attribute of emotion that varies across individuals and is regulated by this circuitry.
Zotero Collections:

Asthma, like many inflammatory disorders, is affected by psychological stress, suggesting that reciprocal modulation may occur between peripheral factors regulating inflammation and central neural circuitry underlying emotion and stress reactivity. Despite suggestions that emotional factors may modulate processes of inflammation in asthma and, conversely, that peripheral inflammatory signals influence the brain, the neural circuitry involved remains elusive. Here we show, using functional magnetic resonance imaging, that activity in the anterior cingulate cortex and insula to asthma-relevant emotional, compared with valence-neutral stimuli, is associated with markers of inflammation and airway obstruction in asthmatic subjects exposed to antigen. This activation accounts for > or =40% of the variance in the peripheral markers and suggests a neural basis for emotion-induced modulation of airway disease in asthma. The anterior cingulate cortex and insula have been implicated in the affective evaluation of sensory stimulation, regulation of homeostatic responses, and visceral perception. In individuals with asthma and other stress-related conditions, these brain regions may be hyperresponsive to disease-specific emotional and afferent physiological signals, which may contribute to the dysregulation of peripheral processes, such as inflammation.
Zotero Collections:

Meditation refers to a family of complex emotional and attentional regulatory practices, which can be classified into two main styles – focused attention (FA) and open monitoring (OM) – involving different attentional, cognitive monitoring and awareness processes. In a functional magnetic resonance study we originally characterized and contrasted FA and OM meditation forms within the same experiment, by an integrated FA–OM design. Theravada Buddhist monks, expert in both FA and OM meditation forms, and lay novices with 10 days of meditation practice, participated in the experiment. Our evidence suggests that expert meditators control cognitive engagement in conscious processing of sensory-related, thought and emotion contents, by massive self-regulation of fronto-parietal and insular areas in the left hemisphere, in a meditation state-dependent fashion. We also found that anterior cingulate and dorsolateral prefrontal cortices play antagonist roles in the executive control of the attention setting in meditation tasks. Our findings resolve the controversy between the hypothesis that meditative states are associated to transient hypofrontality or deactivation of executive brain areas, and evidence about the activation of executive brain areas in meditation. Finally, our study suggests that a functional reorganization of brain activity patterns for focused attention and cognitive monitoring takes place with mental practice, and that meditation-related neuroplasticity is crucially associated to a functional reorganization of activity patterns in prefrontal cortex and in the insula.

OBJECTIVE: The purpose of this study was to use functional magnetic resonance imaging (fMRI) to probe the neural circuitry associated with reactivity to negative and positive affective stimuli in patients with major depressive disorder before treatment and after 2 and 8 weeks of treatment with venlafaxine. Relations between baseline neural activation and response to treatment were also evaluated. METHOD: Patients with major depressive disorder (N=12) and healthy comparison subjects (N=5) were scanned on three occasions, during which trials of alternating blocks of affective and neutral pictorial visual stimuli were presented. Symptoms were evaluated at each testing occasion, and both groups completed self-report measures of mood. Statistical parametric mapping was used to examine the fMRI data with a focus on the group-by-time interactions. RESULTS: Patients showed a significant reduction in depressive symptoms with treatment. Group-by-time interactions in response to the negative versus neutral stimuli were found in the left insular cortex and the left anterior cingulate. At baseline, both groups showed bilateral activation in the visual cortices, lateral prefrontal cortex, and amygdala in response to the negative versus neutral stimuli, with patients showing greater activation in the visual cortex and less activation in the left lateral prefrontal cortex. Patients with greater relative anterior cingulate activation at baseline in response to the negative versus neutral stimuli showed the most robust treatment response. CONCLUSIONS: The findings underscore the importance of the neural circuitry activated by negative affect in depression and indicate that components of this circuitry can be changed within 2 weeks of treatment with antidepressant medication.
Zotero Collections:

OBJECTIVE: Happiness, sadness, and disgust are three emotions that differ in their valence (positive or negative) and associated action tendencies (approach or withdrawal). This study was designed to investigate the neuroanatomical correlates of these discrete emotions. METHOD: Twelve healthy female subjects were studied. Positron emission tomography and [15O]H2O were used to measure regional brain activity. There were 12 conditions per subject: happiness, sadness, and disgust and three control conditions, each induced by film and recall. Emotion and control tasks were alternated throughout. Condition order was pseudo-randomized and counterbalanced across subjects. Analyses focused on brain activity patterns for each emotion when combining film and recall data. RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9). These three emotions were also associated with activation of anterior and posterior temporal structures, primarily when induced by film. Recalled sadness was associated with increased activation in the anterior insula. Happiness was distinguished from sadness by greater activity in the vicinity of ventral mesial frontal cortex. CONCLUSIONS: While this study should be considered preliminary, it identifies regions of the brain that participate in happiness, sadness, and disgust, regions that distinguish between positive and negative emotions, and regions that depend on both the elicitor and valence of emotion or their interaction.
Zotero Collections:

Recent theoretical and empirical work in cognitive science and neuroscience is brought into contact with the concept of the flow experience. After a brief exposition of brain function, the explicit-implicit distinction is applied to the effortless information processing that is so characteristic of the flow state. The explicit system is associated with the higher cognitive functions of the frontal lobe and medial temporal lobe structures and has evolved to increase cognitive flexibility. In contrast, the implicit system is associated with the skill-based knowledge supported primarily by the basal ganglia and has the advantage of being more efficient. From the analysis of this flexibility/efficiency trade-off emerges a thesis that identifies the flow state as a period during which a highly practiced skill that is represented in the implicit system's knowledge base is implemented without interference from the explicit system. It is proposed that a necessary prerequisite to the experience of flow is a state of transient hypofrontality that enables the temporary suppression of the analytical and meta-conscious capacities of the explicit system. Examining sensory-motor integration skills that seem to typify flow such as athletic performance, writing, and free-jazz improvisation, the new framework clarifies how this concept relates to creativity and opens new avenues of research.

In children, behavioral inhibition (BI) in response to potential threat predicts the development of anxiety and affective disorders, and primate lesion studies suggest involvement of the orbitofrontal cortex (OFC) in mediating BI. Lesion studies are essential for establishing causality in brain-behavior relationships, but should be interpreted cautiously because the impact of a discrete lesion on a complex neural circuit extends beyond the lesion location. Complementary functional imaging methods assessing how lesions influence other parts of the circuit can aid in precisely understanding how lesions affect behavior. Using this combination of approaches in monkeys, we found that OFC lesions concomitantly alter BI and metabolism in the bed nucleus of stria terminalis (BNST) region and that individual differences in BNST activity predict BI. Thus it appears that an important function of the OFC in response to threat is to modulate the BNST, which may more directly influence the expression of BI.
Zotero Collections:

Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mother's affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.
Zotero Collections:

There is mounting evidence that prefrontal cortex (PFC) is activated during mnemonic operations such as working memory maintenance and also during response-related operations. In the current study, we examine the neural organization of mnemonic and response operations with respect to each other within PFC. Stimulus-evoked and sustained functional MRI activity was recorded during performance of a mental calculation task. The presence or absence of mnemonic and response demands was manipulated in a 2 x 2 factorial design with conditions requiring: (1) memory encoding and maintenance (M+); (2) response selection and execution (R+); (3) encoding, maintenance, and response execution (M+R+); (4) neither mnemonic nor response-related processes (M-R-). The first step of the analyses identified PFC voxels exhibiting differential activity during (M+) vs. (R+) trials. Within these voxels, we then examined activity during multiple phases of (M+R+) trials. Greater stimulus-evoked and sustained activity was observed within the anterior extent of dorsolateral prefrontal cortex (BA 46) during R+ vs. M+ trials. In contrast, greater activity was observed in the posterior extent of dorsolateral PFC during M+ vs. R+ trials. Importantly, both regions were activated during (M+R+) trials. Activity levels during all of these conditions exceeded levels observed during (M-R-) control trials. These results suggest that integrative functions of PFC that allow past information to guide future actions may emerge from communication between discrete subregions supporting mnemonic and response operations.
Zotero Collections:

Pain can be modulated by several cognitive techniques, typically involving increased cognitive control and decreased sensory processing. Recently, it has been demonstrated that pain can also be attenuated by mindfulness. Here, we investigate the underlying brain mechanisms by which the state of mindfulness reduces pain. Mindfulness practitioners and controls received unpleasant electric stimuli in the functional magnetic resonance imaging scanner during a mindfulness and a control condition. Mindfulness practitioners, but not controls, were able to reduce pain unpleasantness by 22% and anticipatory anxiety by 29% during a mindful state. In the brain, this reduction was associated with decreased activation in the lateral prefrontal cortex and increased activation in the right posterior insula during stimulation and increased rostral anterior cingulate cortex activation during the anticipation of pain. These findings reveal a unique mechanism of pain modulation, comprising increased sensory processing and decreased cognitive control, and are in sharp contrast to established pain modulation mechanisms.

Pages

  • Page
  • of 4