Skip to main content Skip to search
Displaying 1 - 2 of 2
Experienced Qigong meditators who regularly perform the exercises “Thinking of Nothing” and “Qigong” were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during “Qigong” than “Thinking of Nothing,” forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during “Thinking of Nothing” than “Qigong,” forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial–final no-task resting, “Qigong” showed activation in posterior areas whereas “Thinking of Nothing” showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during “Qigong” and anterior (left) prefrontal areas during “Thinking of Nothing” may reflect a predominance of self-reference, attention and input-centered processing in the “Qigong” meditation, and of control-centered processing in the “Thinking of Nothing” meditation.

The aim of mindfulness meditation is to develop present-focused, non-judgmental, attention. Therefore, experience in meditation should be associated with less anticipation and negative appraisal of pain. In this study we compared a group of individuals with meditation experience to a control group to test whether any differences in the affective appraisal of pain could be explained by lower anticipatory neural processing. Anticipatory and pain-evoked ERPs and reported pain unpleasantness were recorded in response to laser stimuli of matched subjective intensity between the two groups. ERP data were analysed after source estimation with LORETA. No group effects were found on the laser energies used to induce pain. More experienced meditators perceived the pain as less unpleasant relative to controls, with meditation experience correlating inversely with unpleasantness ratings. ERP source data for anticipation showed that in meditators, lower activity in midcingulate cortex relative to controls was related to the lower unpleasantness ratings, and was predicted by lifetime meditation experience. Meditators also reversed the normal positive correlation between medial prefrontal cortical activity and pain unpleasantness during anticipation. Meditation was also associated with lower activity in S2 and insula during the pain-evoked response, although the experiment could not disambiguate this activity from the preceding anticipation response. Our data is consistent with the hypothesis that meditation reduces the anticipation and negative appraisal of pain, but effects on pain-evoked activity are less clear and may originate from preceding anticipatory activity. Further work is required to directly test the causal relationship between meditation, pain anticipation, and pain experience.