Skip to main content Skip to search
Displaying 51 - 75 of 76

Pages

  • Page
  • of 4
Recent theoretical and empirical work in cognitive science and neuroscience is brought into contact with the concept of the flow experience. After a brief exposition of brain function, the explicit-implicit distinction is applied to the effortless information processing that is so characteristic of the flow state. The explicit system is associated with the higher cognitive functions of the frontal lobe and medial temporal lobe structures and has evolved to increase cognitive flexibility. In contrast, the implicit system is associated with the skill-based knowledge supported primarily by the basal ganglia and has the advantage of being more efficient. From the analysis of this flexibility/efficiency trade-off emerges a thesis that identifies the flow state as a period during which a highly practiced skill that is represented in the implicit system's knowledge base is implemented without interference from the explicit system. It is proposed that a necessary prerequisite to the experience of flow is a state of transient hypofrontality that enables the temporary suppression of the analytical and meta-conscious capacities of the explicit system. Examining sensory-motor integration skills that seem to typify flow such as athletic performance, writing, and free-jazz improvisation, the new framework clarifies how this concept relates to creativity and opens new avenues of research.

<p>Social neuro-science has recently started to investigate the neuronal mechanisms underlying our ability to understand the mental and emotional states of others. In this review, imaging research conducted on theory of mind (ToM or mentalizing) and empathy is selectively reviewed. It is proposed that even though these abilities are often used as synonyms in the literature these capacities represent different abilities that rely on different neuronal circuitry. ToM refers to our ability to understand mental states such as intentions, goals and beliefs, and relies on structures of the temporal lobe and the pre-frontal cortex. In contrast, empathy refers to our ability to share the feelings (emotions and sensations) of others and relies on sensorimotor cortices as well as limbic and para-limbic structures. It is further argued that the concept of empathy as used in lay terms refers to a multi-level construct extending from simple forms of emotion contagion to complex forms of cognitive perspective taking. Future research should investigate the relative contribution of empathizing and mentalizing abilities in the understanding of other people's states. Finally, it is suggested that the abilities to understand other people's thoughts and to share their affects display different ontogenetic trajectories reflecting the different developmental paths of their underlying neural structures. In particular, empathy develops much earlier than mentalizing abilities, because the former relys on limbic structures which develop early in ontogeny, whereas the latter rely on lateral temporal lobe and pre-frontal structures which are among the last to fully mature.</p>
Zotero Collections:

Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mother's affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.
Zotero Collections:

Neuroimage phenotyping for psychiatric and neurological disorders is performed using voxelwise analyses also known as voxel based analyses or morphometry (VBM). A typical voxelwise analysis treats measurements at each voxel (e.g., fractional anisotropy, gray matter probability) as outcome measures to study the effects of possible explanatory variables (e.g., age, group) in a linear regression setting. Furthermore, each voxel is treated independently until the stage of correction for multiple comparisons. Recently, multi-voxel pattern analyses (MVPA), such as classification, have arisen as an alternative to VBM. The main advantage of MVPA over VBM is that the former employ multivariate methods which can account for interactions among voxels in identifying significant patterns. They also provide ways for computer-aided diagnosis and prognosis at individual subject level. However, compared to VBM, the results of MVPA are often more difficult to interpret and prone to arbitrary conclusions. In this paper, first we use penalized likelihood modeling to provide a unified framework for understanding both VBM and MVPA. We then utilize statistical learning theory to provide practical methods for interpreting the results of MVPA beyond commonly used performance metrics, such as leave-one-out-cross validation accuracy and area under the receiver operating characteristic (ROC) curve. Additionally, we demonstrate that there are challenges in MVPA when trying to obtain image phenotyping information in the form of statistical parametric maps (SPMs), which are commonly obtained from VBM, and provide a bootstrap strategy as a potential solution for generating SPMs using MVPA. This technique also allows us to maximize the use of available training data. We illustrate the empirical performance of the proposed framework using two different neuroimaging studies that pose different levels of challenge for classification using MVPA.
Zotero Collections:

Increasing research indicates that concepts are represented as distributed circuits of property information across the brain's modality-specific areas. The current study examines the distributed representation of an important but under-explored category, foods. Participants viewed pictures of appetizing foods (along with pictures of locations for comparison) during event-related fMRI. Compared to location pictures, food pictures activated the right insula/operculum and the left orbitofrontal cortex, both gustatory processing areas. Food pictures also activated regions of visual cortex that represent object shape. Together these areas contribute to a distributed neural circuit that represents food knowledge. Not only does this circuit become active during the tasting of actual foods, it also becomes active while viewing food pictures. Via the process of pattern completion, food pictures activate gustatory regions of the circuit to produce conceptual inferences about taste. Consistent with theories that ground knowledge in the modalities, these inferences arise as reenactments of modality-specific processing.
Zotero Collections:

Evidence that placebo acupuncture is an effective treatment for chronic pain presents a puzzle: how do placebo needles appearing to patients to penetrate the body, but instead sitting on the skin’s surface in the manner of a tactile stimulus, evoke a healing response? Previous accounts of ritual touch healing in which patients often described enhanced touch sensations (including warmth, tingling or flowing sensations) suggest an embodied healing mechanism. In this qualitative study, we asked a subset of patients in a singleblind randomized trial in irritable bowel syndrome to describe their treatment experiences while undergoing placebo treament. Analysis focused on patients’ unprompted descriptions of any enhanced touch sensations (e.g., warmth, tingling) and any significance patients assigned to the sensations. We found in 5/6 cases, patients associated sensations including “warmth” and “tingling” with treatment efficacy. The conclusion offers a “neurophenomenological” account of the placebo effect by considering dynamic effects of attentional filtering on early sensory cortices, possibly underlying the phenomenology of placebo acupuncture.
Zotero Collections:

Individuals with fragile X syndrome (FXS) commonly display characteristics of social anxiety, including gaze aversion, increased time to initiate social interaction, and difficulty forming meaningful peer relationships. While neural correlates of face processing, an important component of social interaction, are altered in FXS, studies have not examined whether social anxiety in this population is related to higher cognitive processes, such as memory. This study aimed to determine whether the neural circuitry involved in face encoding was disrupted in individuals with FXS, and whether brain activity during face encoding was related to levels of social anxiety. A group of 11 individuals with FXS (5 M) and 11 age- and gender-matched control participants underwent fMRI scanning while performing a face encoding task with online eye-tracking. Results indicate that compared to the control group, individuals with FXS exhibited decreased activation of prefrontal regions associated with complex social cognition, including the medial and superior frontal cortex, during successful face encoding. Further, the FXS and control groups showed significantly different relationships between measures of social anxiety (including gaze-fixation) and brain activity during face encoding. These data indicate that social anxiety in FXS may be related to the inability to successfully recruit higher level social cognition regions during the initial phases of memory formation.
Zotero Collections:

BACKGROUND: Anhedonia, a reduced ability to experience pleasure, is a chief symptom of major depressive disorder and is related to reduced frontostriatal connectivity when attempting to upregulate positive emotion. The present study examined another facet of positive emotion regulation associated with anhedonia-namely, the downregulation of positive affect-and its relation to prefrontal cortex (PFC) activity. METHODS: Neuroimaging data were collected from 27 individuals meeting criteria for major depressive disorder as they attempted to suppress positive emotion during a positive emotion regulation task. Their PFC activation pattern was compared with the PFC activation pattern exhibited by 19 healthy control subjects during the same task. Anhedonia scores were collected at three time points: at baseline (time 1), 8 weeks after time 1 (i.e., time 2), and 6 months after time 1 (i.e., time 3). Prefrontal cortex activity at time 1 was used to predict change in anhedonia over time. Analyses were conducted utilizing hierarchical linear modeling software. RESULTS: Depressed individuals who could not inhibit positive emotion-evinced by reduced right ventrolateral prefrontal cortex activity during attempts to dampen their experience of positive emotion in response to positive visual stimuli-exhibited a steeper anhedonia reduction slope between baseline and 8 weeks of treatment with antidepressant medication (p < .05). Control subjects showed a similar trend between baseline and time 3. CONCLUSIONS: To reduce anhedonia, it may be necessary to teach individuals how to counteract the functioning of an overactive pleasure-dampening prefrontal inhibitory system.
Zotero Collections:

Given the central role of the amygdala in fear perception and expression and its likely abnormality in affective disorders and autism, there is great demand for a technique to measure differences in neurochemistry of the human amygdala. Unfortunately, it is also a technically complex target for magnetic resonance spectroscopy (MRS) due to a small volume, high field inhomogeneity and a shared boundary with hippocampus, which can undergo opposite changes in response to stress. We attempted to achieve reliable PRESS-localized single-voxel MRS at 3T of the isolated human amygdala by using anatomy to guide voxel size and location. We present data from 106 amygdala-MRS sessions from 58 volunteers aged 10 to 52 years, including two tests of one-week stability and a feasibility study in an adolescent sample. Our main outcomes were indices of spectral quality, repeated measurement variability (within- and between-subject standard deviations), and sensitivity to stable individual differences measured by intra-class correlation (ICC). We present metrics of amygdala-MRS reliability for n-acetyl-aspartate, creatine, choline, myo-Inositol, and glutamate+glutamine (Glx). We found that scan quality suffers an age-related difference in field homogeneity and modified our protocol to compensate. We further identified an effect of anatomical inclusion near the endorhinal sulcus, a region of high synaptic density, that contributes up to 29% of within-subject variability across 4 sessions (n=14). Remaining variability in line width but not signal-to-noise also detracts from reliability. Statistical correction for partial inclusion of these strong neurochemical gradients decreases n-acetyl-aspartate reliability from an intraclass correlation of 0.84 to 0.56 for 7-minute acquisitions. This suggests that systematic differences in anatomical inclusion can contribute greatly to apparent neurochemical concentrations and could produce false group differences in experimental studies. Precise, anatomically-based prescriptions that avoid age-related sources of inhomogeneity and use longer scan times may permit study of individual differences in neurochemistry throughout development in this late-maturing structure.
Zotero Collections:

Four U.S. sites formed a consortium to conduct a multisite study of fMRI methods. The primary purpose of this consortium was to examine the reliability and reproducibility of fMRI results. FMRI data were collected on healthy adults during performance of a spatial working memory task at four different institutions. Two sets of data from each institution were made available. First, data from two subjects were made available from each site and were processed and analyzed as a pooled data set. Second, statistical maps from five to eight subjects per site were made available. These images were aligned in stereotactic space and common regions of activation were examined to address the reproducibility of fMRI results when both image acquisition and analysis vary as a function of site. Our grouped and individual data analyses showed reliable patterns of activation in dorsolateral prefrontal cortex and posterior parietal cortex during performance of the working memory task across all four sites. This multisite study, the first of its kind using fMRI data, demonstrates highly consistent findings across sites.
Zotero Collections:

<p>For decades the importance of background situations has been documented across all areas of cognition. Nevertheless, theories of concepts generally ignore background situations, focusing largely on bottom-up, stimulus-based processing. Furthermore, empirical research on concepts typically ignores background situations, not incorporating them into experimental designs. A selective review of relevant literatures demonstrates that concepts are not abstracted out of situations but instead are situated. Background situations constrain conceptual processing in many tasks (e.g., recall, recognition, categorization, lexical decision, color naming, property verification, property generation) across many areas of cognition (e.g., episodic memory, conceptual processing, visual object recognition, language comprehension). A taxonomy of situations is proposed in which grain size, meaningfulness, and tangibility distinguish the cumulative situations that structure cognition hierarchically.</p>
Zotero Collections:

Four theories of the human conceptual system--semantic memory, exemplar models, feed-forward connectionist nets, and situated simulation theory--are characterized and contrasted on five dimensions. Empirical evidence is then reviewed for the situated simulation theory and conclusions are discussed. (Author/VWL)
Zotero Collections:

We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.
Zotero Collections:

Previous research has shown that na_ve participants display a high level of agreement when asked to choose or drawschematic representations, or image schemas, of concrete and abstract verbs [Proceedings of the 23rd Annual Meeting of the Cognitive Science Society, 2001, Erlbaum, Mawhah, NJ, p. 873]. For example, participants tended to ascribe a horizontal image schema to push, and a vertical image schema to respect. This consistency in offline data is preliminary evidence that language invokes spatial forms of representation. It also provided norms that were used in the present research to investigate the activation of spatial image schemas during online language comprehension. We predicted that if comprehending a verb activates a spatial representation that is extended along a particular horizontal or vertical axis, it will affect other forms of spatial processing along that axis. Participants listened to short sentences while engaged in a visual discrimination task (Experiment 1) and a picture memory task (Experiment 2). In both cases, reaction times showed an interaction between the horizontal/vertical nature of the verb's image schema, and the horizontal/vertical position of the visual stimuli. We argue that such spatial effects of verb comprehension provide evidence for the perceptual–motor character of linguistic representations.
Zotero Collections:

<p>Social cognition, including complex social judgments and attitudes, is shaped by individual learning experiences, where affect often plays a critical role. Aversive classical conditioning-a form of associative learning involving a relationship between a neutral event (conditioned stimulus, CS) and an aversive event (unconditioned stimulus, US)-represents a well-controlled paradigm to study how the acquisition of socially relevant knowledge influences behavior and the brain. Unraveling the temporal unfolding of brain mechanisms involved appears critical for an initial understanding about how social cognition operates. Here, 128-channel ERPs were recorded in 50 subjects during the acquisition phase of a differential aversive classical conditioning paradigm. The CS+ (two fearful faces) were paired 50% of the time with an aversive noise (CS upward arrow + /Paired), whereas in the remaining 50% they were not (CS upward arrow + /Unpaired); the CS- (two different fearful faces) were never paired with the noise. Scalp ERP analyses revealed differences between CS upward arrow + /Unpaired and CS- as early as approximately 120 ms post-stimulus. Tomographic source localization analyses revealed early activation modulated by the CS+ in the ventral visual pathway (e.g. fusiform gyrus, approximately 120 ms), right middle frontal gyrus (approximately 176 ms), and precuneus (approximately 240 ms). At approximately 120 ms, the CS- elicited increased activation in the left insula and left middle frontal gyrus. These findings not only confirm a critical role of prefrontal, insular, and precuneus regions in aversive conditioning, but they also suggest that biologically and socially salient information modulates activation at early stages of the information processing flow, and thus furnish initial insight about how affect and social judgments operate.</p>
Zotero Collections:

<p>Illustrates parallels between global descriptions of internal states in clinical and personality psychology and notions of global arousal in autonomic and central psychophysiology. Such assumptions about the undifferentiated nature of internal states are questioned on the basis of recent psychophysiological research. Data are reviewed on cortical specificity and its implications for conceptualizing clinically relevant cognitive and affective processes. Principles of psychophysiological specificity are applied to the understanding and self-regulation of anxiety. General implications of this approach for the rationally based construction of therapeutic interventions are discussed. (41 ref)</p>
Zotero Collections:

We used fMRI to examine amygdala activation in response to fearful facial expressions, measured over multiple scanning sessions. 15 human subjects underwent three scanning sessions, at 0, 2 and 8 weeks. During each session, functional brain images centered about the amygdala were acquired continuously while participants were shown alternating blocks of fearful, neutral and happy facial expressions. Intraclass correlation coefficients calculated across the sessions indicated stability of response in left amygdala to fearful faces (as a change from baseline), but considerably less left amygdala stability in responses to neutral expressions and for fear versus neutral contrasts. The results demonstrate that the measurement of fMRI BOLD responses in amygdala to fearful facial expressions might be usefully employed as an index of amygdala reactivity over extended periods. While signal change to fearful facial expressions appears robust, the experimental design employed here has yielded variable responsivity within baseline or comparison conditions. Future studies might manipulate the experimental design to either amplify or attenuate this variability, according to the goals of the research.
Zotero Collections:

The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the e-neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.
Zotero Collections:

<p>Studied the different effects of yoga and psychomotor activity on a coding task, with 34 children referred to a learning center as Ss. They received a baseline period, a control period involving a fine motor task, an experimental treatment, another control period, a treatment reversal, and a control period. The results indicate that order of treatment had no effect on the results. Furthermore, coding scores in the 2nd half of the experiment were higher than those in the 1st half. There was no difference in the effect on performance of yoga and gross motor activities. Irrespective of which treatment was given, scores after treatment were significantly higher than those during the control periods. There are implications for physical education programming in elementary schools.</p>

Muscle electrical activity, or "electromyogenic" (EMG) artifact, poses a serious threat to the validity of electroencephalography (EEG) investigations in the frequency domain. EMG is sensitive to a variety of psychological processes and can mask genuine effects or masquerade as legitimate neurogenic effects across the scalp in frequencies at least as low as the alpha band (8-13 Hz). Although several techniques for correcting myogenic activity have been described, most are subjected to only limited validation attempts. Attempts to gauge the impact of EMG correction on intracerebral source models (source "localization" analyses) are rarer still. Accordingly, we assessed the sensitivity and specificity of one prominent correction tool, independent component analysis (ICA), on the scalp and in the source-space using high-resolution EEG. Data were collected from 17 participants while neurogenic and myogenic activity was independently varied. Several protocols for classifying and discarding components classified as myogenic and non-myogenic artifact (e.g., ocular) were systematically assessed, leading to the exclusion of one-third to as much as three-quarters of the variance in the EEG. Some, but not all, of these protocols showed adequate performance on the scalp. Indeed, performance was superior to previously validated regression-based techniques. Nevertheless, ICA-based EMG correction exhibited low validity in the intracerebral source-space, likely owing to incomplete separation of neurogenic from myogenic sources. Taken with prior work, this indicates that EMG artifact can substantially distort estimates of intracerebral spectral activity. Neither regression- nor ICA-based EMG correction techniques provide complete safeguards against such distortions. In light of these results, several practical suggestions and recommendations are made for intelligently using ICA to minimize EMG and other common artifacts.
Zotero Collections:

Recent neuroimaging and neuropsychological work has begun to shed light on how the brain responds to the viewing of facial expressions of emotion. However, one important category of facial expression that has not been studied on this level is the facial expression of pain. We investigated the neural response to pain expressions by performing functional magnetic resonance imaging (fMRI) as subjects viewed short video sequences showing faces expressing either moderate pain or, for comparison, no pain. In alternate blocks, the same subjects received both painful and non-painful thermal stimulation. Facial expressions of pain were found to engage cortical areas also engaged by the first-hand experience of pain, including anterior cingulate cortex and insula. The reported findings corroborate other work in which the neural response to witnessed pain has been examined from other perspectives. In addition, they lend support to the idea that common neural substrates are involved in representing one's own and others' affective states.
Zotero Collections:

Reputation systems promote cooperation and deter antisocial behavior in groups. Little is known, however, about how and why people share reputational information. Here, we seek to establish the existence and dynamics of prosocial gossip, the sharing of negative evaluative information about a target in a way that protects others from antisocial or exploitative behavior. We present a model of prosocial gossip and the results of 4 studies testing the model's claims. Results of Studies 1 through 3 demonstrate that (a) individuals who observe an antisocial act experience negative affect and are compelled to share information about the antisocial actor with a potentially vulnerable person, (b) sharing such information reduces negative affect created by observing the antisocial behavior, and (c) individuals possessing more prosocial orientations are the most motivated to engage in such gossip, even at a personal cost, and exhibit the greatest reduction in negative affect as a result. Study 4 demonstrates that prosocial gossip can effectively deter selfishness and promote cooperation. Taken together these results highlight the roles of prosocial motivations and negative affective reactions to injustice in maintaining reputational information sharing in groups. We conclude by discussing implications for reputational theories of the maintenance of cooperation in human groups.
Zotero Collections:

Pages

  • Page
  • of 4