Displaying 1 - 2 of 2
The cholinergic system has consistently been implicated in Pavlovian fear conditioning. Considerable work has been done to localize specific nicotinic receptor subtypes in the hippocampus and determine their functional importance; however, the specific function of many of these subtypes has yet to be determined. An alpha7 nicotinic antagonist methyllycaconitine (MLA) (35 microg), and a broad spectrum non-alpha7 nicotinic antagonist mecamylamine (35 microg) was injected directly into the dorsal hippocampus or overlying cortex either 15 min pre-, 1 min post-, or 6h post-fear conditioning. One week after conditioning, retention of contextual and cue (tone) conditioning were assessed. A significant impairment in retention of contextual fear was observed when mecamylamine was injected 15 min pre- and 1 min post-conditioning. No significant impairment was observed when mecamylamine was injected 6h post-conditioning. Likewise, a significant impairment in retention of contextual fear was observed when MLA was injected 1 min post-conditioning; however, in contrast, MLA did not show any significant impairments when injected 15 min pre-conditioning, but did show a significant impairment when injected 6h post-conditioning. There were no significant impairments observed when either drug was injected into overlying cortex. No significant impairments were observed in cue conditioning for either drug. In general, specific temporal dynamics involved in nicotinic receptor function were found relative to time of receptor dysfunction. The results indicate that the greatest deficits in long-term retention (1 week) of contextual fear are produced by central infusion of MLA minutes to hours post-conditioning or mecamylamine within minutes of conditioning.
Zotero Collections:
Temperamentally anxious individuals can be identified in childhood and are at risk to develop anxiety and depressive disorders. In addition, these individuals tend to have extreme asymmetric right prefrontal brain activity. Although common and clinically important, little is known about the pathophysiology of anxious temperament. Regardless, indirect evidence from rodent studies and difficult to interpret primate studies is used to support the hypothesis that the amygdala plays a central role. In previous studies using rhesus monkeys, we characterized an anxious temperament endophenotype that is associated with excessive anxiety and fear-related responses and increased electrical activity in right frontal brain regions. To examine the role of the amygdala in mediating this endophenotype and other fearful responses, we prepared monkeys with selective fiber sparing ibotenic acid lesions of the amygdala. Unconditioned trait-like anxiety-fear responses remained intact in monkeys with >95% bilateral amygdala destruction. In addition, the lesions did not affect EEG frontal asymmetry. However, acute unconditioned fear responses, such as those elicited by exposure to a snake and to an unfamiliar threatening conspecific were blunted in monkeys with >70% lesions. These findings demonstrate that the primate amygdala is involved in mediating some acute unconditioned fear responses but challenge the notion that the amygdala is the key structure underlying the dispositional behavioral and physiological characteristics of anxious temperament.
Zotero Collections: