Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture second-by-second changes in ongoing emotion until now. The relationship between pleasure and second-by-second lateral frontal activity was examined with the use of hierarchical linear modeling in a sample of 128 children ages 6-10 years. Electroencephalographic activity was recorded during "pop-out toy," a standardized task that elicits pleasure. The task consisted of 3 epochs: an anticipation period sandwiched between 2 play periods. The amount of pleasure expressed during the task predicted the pattern of nonlinear change in lateral frontal activity. Children who expressed increasing amounts of pleasure during the task exhibited increasing left lateral frontal activity during the task, whereas children who expressed contentment exhibited increasing right/decreasing left activity. These findings indicate that task-dependent changes in pleasure relate to dynamic, nonlinear changes in lateral frontal activity as the task unfolds.
Zotero Collections:
An overview of the use of EEG to assess hemispheric differences in cognitive and affective processes is presented. Some of the advantages of using EEG to assess asymmetric hemispheric differences in the study of complex mental activity are described. Following this brief introduction, two conceptual issues which are central to studies of EEG asymmetries are introduced: (1) the distinction between hemispheric specialization and activation, and (2) the importance of rostral-caudal differences for the understanding of both specialization and activation. Three methodological issues in the use of EEG to assess hemispheric differences are then presented: (1) the use of asymmetry metrics, (2) muscle artifact, and (3) appropriate reference electrode location. Finally, some empirical examples of using EEG to assess affective and cognitive processes which illustrate these conceptual and methodological issues are described.
Zotero Collections:
This study describes the effects of an 8-week course in Mindfulness-Based Stress Reduction (MBSR; J. Kabat-Zinn, 1982, 1990) on affective symptoms (depression and anxiety), dysfunctional attitudes, and rumination. Given the focus of mindfulness meditation (MM) in modifying cognitive processes, it was hypothesized that the primary change in MM practice involves reductions in ruminative tendencies. We studied a sample of individuals with lifetime mood disorders who were assessed prior to and upon completion of an MBSR course. We also compared a waitlist sample matched with a subset of the MBSR completers. Overall, the results suggest that MM practice primarily leads to decreases in ruminative thinking, even after controlling for reductions in affective symptoms and dysfunctional beliefs.
Zotero Collections:
Zotero Collections:
To emote literally means to move or prepare for action. A large body of research indicates that flexor and extensor movements are conditionally associated with approach- and avoidance-related motivations. It has also been widely argued that approach and avoidant motivations are asymmetrically instantiated in the left and right hemispheres, respectively. Nevertheless, to date, these literatures remain largely separate. In the present investigation, flexor and extensor movements that were visuospatially contextualized as being directed toward the self and away from the self were observed to be asymmetrically represented in the "approach" and "avoidance" hemispheres. Moreover, this pattern of hemispheric specialization was manifested to a greater degree the higher participants' self-reported level of daily positive affect and the lower their self-reported level of dispositional anxiety. Collectively, these findings have direct implications for models of embodied emotional and perceptual processing, as well as for investigations of individual differences in emotional disposition.
Zotero Collections:
The authors present an overview of the neural bases of emotion. They underscore the role of the prefrontal cortex (PFC) and amygdala in 2 broad approach- and withdrawal-related emotion systems. Components and measures of affective style are identified. Emphasis is given to affective chronometry and a role for the PFC in this process is proposed. Plasticity in the central circuitry of emotion is considered, and implications of data showing experience-induced changes in the hippocampus for understanding psychopathology and stress-related symptoms are discussed. Two key forms of affective plasticity are described--context and regulation. A role for the hippocampus in context-dependent normal and dysfunctional emotional responding is proposed. Finally, implications of these data for understanding the impact on neural circuitry of interventions to promote positive affect and on mechanisms that govern health and disease are considered.
Zotero Collections:
We investigated the impact of mindfulness training (MT) on working memory capacity (WMC) and affective experience. WMC is used in managing cognitive demands and regulating emotions. Yet, persistent and intensive demands, such as those experienced during high-stress intervals, may deplete WMC and lead to cognitive failures and emotional disturbances. We hypothesized that MT may mitigate these deleterious effects by bolstering WMC. We recruited 2 military cohorts during the high-stress predeployment interval and provided MT to 1 (MT, n = 31) but not the other group (military control group, MC, n = 17). The MT group attended an 8-week MT course and logged the amount of out-of-class time spent practicing formal MT exercises. The operation span task was used to index WMC at 2 testing sessions before and after the MT course. Although WMC remained stable over time in civilians (n = 12), it degraded in the MC group. In the MT group, WMC decreased over time in those with low MT practice time, but increased in those with high practice time. Higher MT practice time also corresponded to lower levels of negative affect and higher levels of positive affect (indexed by the Positive and Negative Affect Schedule). The relationship between practice time and negative, but not positive, affect was mediated by WMC, indicating that MT-related improvements in WMC may support some but not all of MT's salutary effects. Nonetheless, these findings suggest that sufficient MT practice may protect against functional impairments associated with high-stress contexts.
Zotero Collections:
In this paper I discuss how expressive behavior relates to personality and psychopathology, integrating recent findings from my laboratory and the insights of Charles Darwin on this topic. In the first part of the paper I challenge the view, in part espoused by Darwin, that humans are equipped to convey only a limited number of emotions with nonverbal behavior. Our lab has documented displays for several emotions, including embarrassment, love, desire, compassion, gratitude, and awe, to name just a few states that previously were thought not to possess a distinct display. I then present an argument for how individual differences in emotion, although fleeting, shape the social environment. This argument focuses on the functions of nonverbal display: to provide information to others, to evoke responses, and to serve as incentives of preceding or ensuing social behavior. This reasoning sets the stage for the study of the relationships between personality, psychopathology, and expressive behavior, to which I turn in the final part of the paper. Here I show that basic personality traits (e.g., extraversion, agreeableness) and psychological disorders (e.g., externalizing disorder in children, autism) have expressive signatures that shape social interactions and environments in profound ways that might perpetuate and transmit the trait or disorder.
Zotero Collections:
On the basis of the widespread belief that emotions underpin psychological adjustment, the authors tested 3 predicted relations between externalizing problems and anger, internalizing problems and fear and sadness, and the absence of externalizing problems and social-moral emotion (embarrassment). Seventy adolescent boys were classified into 1 of 4 comparison groups on the basis of teacher reports using a behavior problem checklist: internalizers, externalizers, mixed (both internalizers and externalizers), and nondisordered boys. The authors coded the facial expressions of emotion shown by the boys during a structured social interaction. Results supported the 3 hypotheses: (a) Externalizing adolescents showed increased facial expressions of anger, (b) on 1 measure internalizing adolescents showed increased facial expressions of fear, and (c) the absence of externalizing problems (or nondisordered classification) was related to increased displays of embarrassment. Discussion focused on the relations of these findings to hypotheses concerning the role of impulse control in antisocial behavior.
Zotero Collections:
Individuals differ dramatically in the quality and intensity of their response to affectively evocative stimuli. On the basis of prior theory and research, we hypothesized that these individual differences are related to variation in activation of the left and right frontal brain regions. We recorded baseline brain electrical activity from subjects on two occasions 3 weeks apart. Immediately following the second recording, subjects were exposed to brief positive and negative emotional film clips. For subjects whose frontal asymmetry was stable across the 3-week period, greater left frontal activation was associated with reports of more intense positive affect in response to the positive films, whereas greater right frontal activation was associated with more intense reports of negative affect in response to the negative film clips. The methodological and theoretical implications of these data are discussed.
Zotero Collections:
The development of social emotions such as compassion is crucial for successful social interactions as well as for the maintenance of mental and physical health, especially when confronted with distressing life events. Yet, the neural mechanisms supporting the training of these emotions are poorly understood. To study affective plasticity in healthy adults, we measured functional neural and subjective responses to witnessing the distress of others in a newly developed task (Socio-affective Video Task). Participants’ initial empathic responses to the task were accompanied by negative affect and activations in the anterior insula and anterior medial cingulate cortex—a core neural network underlying empathy for pain. Whereas participants reacted with negative affect before training, compassion training increased positive affective experiences, even in response to witnessing others in distress. On the neural level, we observed that, compared with a memory control group, compassion training elicited activity in a neural network including the medial orbitofrontal cortex, putamen, pallidum, and ventral tegmental area—brain regions previously associated with positive affect and affiliation. Taken together, these findings suggest that the deliberate cultivation of compassion offers a new coping strategy that fosters positive affect even when confronted with the distress of others.
Zotero Collections:
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Zotero Collections:
<p>Previous voxel-based morphometry (VBM) studies have revealed that meditation is associated with structural brain changes in regions underlying cognitive processes that are required for attention or mindfulness during meditation. This VBM study examined brain changes related to the practice of an emotion-oriented meditation: loving-kindness meditation (LKM). A 3 T magnetic resonance imaging (MRI) scanner captured images of the brain structures of 25 men, 10 of whom had practiced LKM in the Theravada tradition for at least 5 years. Compared with novices, more gray matter volume was detected in the right angular and posterior parahippocampal gyri in LKM experts. The right angular gyrus has not been previously reported to have structural differences associated with meditation, and its specific role in mind and cognitive empathy theory suggests the uniqueness of this finding for LKM practice. These regions are important for affective regulation associated with empathic response, anxiety and mood. At the same time, gray matter volume in the left temporal lobe in the LKM experts appeared to be greater, an observation that has also been reported in previous MRI meditation studies on meditation styles other than LKM. Overall, the findings of our study suggest that experience in LKM may influence brain structures associated with affective regulation.</p>
Zotero Collections:
Ambivalence is widely assumed to prolong grief. To examine this hypothesis, the authors developed a measure of ambivalence based on an algorithmic combination of separate positive and negative evaluations of one's spouse. Preliminary construct validity was evidenced in relation to emotional difficulties and to facial expressions of emotion. Bereaved participants, relative to a nonbereaved comparison sample, recollected their relationships as better adjusted but were more ambivalent. Ambivalence about spouses was generally associated with increased distress and poorer perceived health but did not predict long-term grief outcome once initial outcome was controlled. In contrast, initial grief and distress predicted increased ambivalence and decreased Dyadic Adjustment Scale scores at 14 months postloss, regardless of initial scores on these measures. Limitations and implications of the findings are discussed.
Zotero Collections:
To monitor the environment for social threat humans must build affective evaluations of others. These evaluations are malleable and to a high degree shaped by responses engendered by specific social encounters. The precise neuronal mechanism by which these evaluations are constructed is poorly understood. We tested a hypothesis that conjoint activity in amygdala and fusiform gyrus would correlate with acquisition of social stimulus value. We tested this using a reinforcement learning algorithm, Q-learning, that assigned values to faces as a function of a history of pairing, or not pairing, with aversive shocks. Behaviourally, we observed a correlation between conditioning induced changes in skin conductance response (SCR) and subjective ratings for likeability of faces. Activity in both amygdala and fusiform gyrus (FG) correlated with the output of the reinforcement learning algorithm parameterized by these ratings. In amygdala, this effect was greater for averted than direct gaze faces. Furthermore, learning-related activity change in these regions correlated with SCR and subjective ratings. We conclude that amygdala and fusiform encode affective value in a manner that closely approximates a standard computational solution to learning.
Zotero Collections:
Previous studies have documented the positive effects of mindfulness meditation on executive control. What has been lacking, however, is an understanding of the mechanism underlying this effect. Some theorists have described mindfulness as embodying two facets—present moment awareness and emotional acceptance. Here, we examine how the effect of meditation practice on executive control manifests in the brain, suggesting that emotional acceptance and performance monitoring play important roles. We investigated the effect of meditation practice on executive control and measured the neural correlates of performance monitoring, specifically, the error-related negativity (ERN), a neurophysiological response that occurs within 100 ms of error commission. Meditators and controls completed a Stroop task, during which we recorded ERN amplitudes with electroencephalography. Meditators showed greater executive control (i.e. fewer errors), a higher ERN and more emotional acceptance than controls. Finally, mediation pathway models further revealed that meditation practice relates to greater executive control and that this effect can be accounted for by heightened emotional acceptance, and to a lesser extent, increased brain-based performance monitoring.
Zotero Collections:
The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.
Zotero Collections:
A review of behavioral and neurobiological data on mood and mood regulation as they pertain to an understanding of mood disorders is presented. Four approaches are considered: 1) behavioral and cognitive; 2) neurobiological; 3) computational; and 4) developmental. Within each of these four sections, we summarize the current status of the field and present our vision for the future, including particular challenges and opportunities. We conclude with a series of specific recommendations for National Institute of Mental Health priorities. Recommendations are presented for the behavioral domain, the neural domain, the domain of behavioral-neural interaction, for training, and for dissemination. It is in the domain of behavioral-neural interaction, in particular, that new research is required that brings together traditions that have developed relatively independently. Training interdisciplinary clinical scientists who meaningfully draw upon both behavioral and neuroscientific literatures and methods is critically required for the realization of these goals.
Zotero Collections:
This article reviews the modern literature on two key aspects of the central circuitry of emotion - the prefrontal cortex (PFC) and the amygdala. There are several different functional divisions of the PFC including the dorsolateral, ventromedial and orbitofrontal sectors. Each of these regions plays some role in affective processing that shares the feature of representing affect in the absence of immediate rewards and punishments as well as in different aspects of emotional regulation. The amygdala appears to be crucial for the learning of new stimulus-threat contingencies and also appears to be important in the expression of cue-specific fear. Individual differences in both tonic activation and phasic reactivity in this circuit play an important role in governing affective style. Emphasis is placed upon affective chronometry, or the time course of emotional responding, as a key attribute of emotion that varies across individuals and is regulated by this circuitry.
Zotero Collections:
Objective: Mindfulness is a process whereby one is aware and receptive to present moment experiences. Although mindfulness-enhancing interventions reduce pathological mental and physical health symptoms across a wide variety of conditions and diseases, the mechanisms underlying these effects remain unknown. Converging evidence from the mindfulness and neuroscience literature suggests that labeling affect may be one mechanism for these effects.
Methods: Participants (n = 27) indicated trait levels of mindfulness and then completed an affect labeling task while undergoing functional magnetic resonance imaging. The labeling task consisted of matching facial expressions to appropriate affect words (affect labeling) or to gender-appropriate names (gender labeling control task).
Results: After controlling for multiple individual difference measures, dispositional mindfulness was associated with greater widespread prefrontal cortical activation, and reduced bilateral amygdala activity during affect labeling, compared with the gender labeling control task. Further, strong negative associations were found between areas of prefrontal cortex and right amygdala responses in participants high in mindfulness but not in participants low in mindfulness.
Conclusions: The present findings with a dispositional measure of mindfulness suggest one potential neurocognitive mechanism for understanding how mindfulness meditation interventions reduce negative affect and improve health outcomes, showing that mindfulness is associated with enhanced prefrontal cortical regulation of affect through labeling of negative affective stimuli.
Zotero Collections:
OBJECTIVE: The purpose of this study was to use functional magnetic resonance imaging (fMRI) to probe the neural circuitry associated with reactivity to negative and positive affective stimuli in patients with major depressive disorder before treatment and after 2 and 8 weeks of treatment with venlafaxine. Relations between baseline neural activation and response to treatment were also evaluated.
METHOD: Patients with major depressive disorder (N=12) and healthy comparison subjects (N=5) were scanned on three occasions, during which trials of alternating blocks of affective and neutral pictorial visual stimuli were presented. Symptoms were evaluated at each testing occasion, and both groups completed self-report measures of mood. Statistical parametric mapping was used to examine the fMRI data with a focus on the group-by-time interactions.
RESULTS: Patients showed a significant reduction in depressive symptoms with treatment. Group-by-time interactions in response to the negative versus neutral stimuli were found in the left insular cortex and the left anterior cingulate. At baseline, both groups showed bilateral activation in the visual cortices, lateral prefrontal cortex, and amygdala in response to the negative versus neutral stimuli, with patients showing greater activation in the visual cortex and less activation in the left lateral prefrontal cortex. Patients with greater relative anterior cingulate activation at baseline in response to the negative versus neutral stimuli showed the most robust treatment response.
CONCLUSIONS: The findings underscore the importance of the neural circuitry activated by negative affect in depression and indicate that components of this circuitry can be changed within 2 weeks of treatment with antidepressant medication.
Zotero Collections:
OBJECTIVE: Positron emission tomography was used to investigate the neural substrates of normal human emotional and their dependence on the types of emotional stimulus.
METHOD: Twelve healthy female subjects underwent 12 measurements of regional brain activity following the intravenous bolus administration of [15O]H2O as they alternated between emotion-generating and control film and recall tasks. Automated image analysis techniques were used to characterize and compare the increases in regional brain activity associated with the emotional response to complex visual (film) and cognitive (recall) stimuli.
RESULTS: Film- and recall-generated emotion were each associated with significantly increased activity in the vicinity of the medial prefrontal cortex and thalamus, suggesting that these regions participate in aspects of emotion that do not depend on the nature of the emotional stimulus. Film-generated emotion was associated with significantly greater increases in activity bilaterally in the occipitotemporparietal cortex, lateral cerebellum, hypothalamus, and a region that includes the anterior temporal cortex, amygdala, and hippocampal formation, suggesting that these regions participate in the emotional response to certain exteroceptive sensory stimuli. Recall-generated sadness was associated with significantly greater increases in activity in the vicinity of the anterior insular cortex, suggesting that this region participates in the emotional response to potentially distressing cognitive or interoceptive sensory stimuli.
CONCLUSIONS: While this study should be considered preliminary, it identified brain regions that participate in externally and internally generated human emotion.
Zotero Collections:
The nature of the affective deficit that characterizes social anhedonia is not well understood. Emotionally evocative visual stimuli were presented to undergraduates identified as anhedonic or normal, based on their scores on the revised Social Anhedonia Scale. The affective stimuli were chosen to elicit positive and negative emotion; a subset of slides were specifically chosen to include social-interpersonal content. In the acoustic startle paradigm, participants were administered startle probes (50-ms 95 dB white noise bursts) while viewing images from the International Affective Picture System. Socially anhedonic individuals did not differ from normally hedonic individuals in terms of their physiological response to the stimuli, regardless of the nature of the content of the stimuli. However, on the self-report measures of trait affectivity, the socially anhedonic individuals reported significantly lower levels of positive affect and higher levels of negative affect. These findings suggest that the affective deficits reported by socially anhedonic individuals are not global in nature.
Zotero Collections:
Positive affect elicited in a mother toward her newborn infant may be one of the most powerful and evolutionarily preserved forms of positive affect in the emotional landscape of human behavior. This study examined the neurobiology of this form of positive emotion and in so doing, sought to overcome the difficulty of eliciting robust positive affect in response to visual stimuli in the physiological laboratory. Six primiparous human mothers with no indications of postpartum depression brought their infants into the laboratory for a photo shoot. Approximately 6 weeks later, they viewed photographs of their infant, another infant, and adult faces during acquisition of functional magnetic resonance images (fMRI). Mothers exhibited bilateral activation of the orbitofrontal cortex (OFC) while viewing pictures of their own versus unfamiliar infants. While in the scanner, mothers rated their mood more positively for pictures of their own infants than for unfamiliar infants, adults, or at baseline. The orbitofrontal activation correlated positively with pleasant mood ratings. In contrast, areas of visual cortex that also discriminated between own and unfamiliar infants were unrelated to mood ratings. These data implicate the orbitofrontal cortex in a mother's affective responses to her infant, a form of positive emotion that has received scant attention in prior human neurobiological studies. Furthermore, individual variations in orbitofrontal activation to infant stimuli may reflect an important dimension of maternal attachment.
Zotero Collections:
Pages |