Skip to main content Skip to search
Displaying 1 - 15 of 15
The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Zotero Collections:

Motion correction of fMRI data is a widely used step prior to data analysis. In this study, a comparison of the motion correction tools provided by several leading fMRI analysis software packages was performed, including AFNI, AIR, BrainVoyager, FSL, and SPM2. Comparisons were performed using data from typical human studies as well as phantom data. The identical reconstruction, preprocessing, and analysis steps were used on every data set, except that motion correction was performed using various configurations from each software package. Each package was studied using default parameters, as well as parameters optimized for speed and accuracy. Forty subjects performed a Go/No-go task (an event-related design that investigates inhibitory motor response) and an N-back task (a block-design paradigm investigating working memory). The human data were analyzed by extracting a set of general linear model (GLM)-derived activation results and comparing the effect of motion correction on thresholded activation cluster size and maximum t value. In addition, a series of simulated phantom data sets were created with known activation locations, magnitudes, and realistic motion. Results from the phantom data indicate that AFNI and SPM2 yield the most accurate motion estimation parameters, while AFNI's interpolation algorithm introduces the least smoothing. AFNI is also the fastest of the packages tested. However, these advantages did not produce noticeably better activation results in motion-corrected data from typical human fMRI experiments. Although differences in performance between packages were apparent in the human data, no single software package produced dramatically better results than the others. The "accurate" parameters showed virtually no improvement in cluster t values compared to the standard parameters. While the "fast" parameters did not result in a substantial increase in speed, they did not degrade the cluster results very much either. The phantom and human data indicate that motion correction can be a valuable step in the data processing chain, yielding improvements of up to 20% in the magnitude and up to 100% in the cluster size of detected activations, but the choice of software package does not substantially affect this improvement.
Zotero Collections:

Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.
Zotero Collections:

PET imaging of the neuroreceptor systems in the brain has earned a prominent role in studying normal development, neuropsychiatric illness and developing targeted drugs. The dopaminergic system is of particular interest due to its role in the development of cognitive function and mood as well as its suspected involvement in neuropsychiatric illness. Nonhuman primate animal models provide a valuable resource for relating neurochemical changes to behavior. To facilitate comparison within and between primate models, we report in vivo D2/D3 binding in a large cohort of adolescent rhesus monkeys. METHODS: In this work, the in vivo D2/D3 dopamine receptor availability was measured in a cohort of 33 rhesus monkeys in the adolescent stage of development (3.2-5.3 years). Both striatal and extrastriatal D2/D3 binding were measured using [F-18]fallypride with a high resolution small animal PET scanner. The distribution volume ratio (DVR) was measured for all subjects and group comparisons of D2/D3 binding among the cohort were made based on age and sex. Because two sequential studies were acquired from a single [F-18]fallypride batch, the effect of competing (unlabeled) ligand mass was also investigated. RESULTS: Among this cohort, the rank order of regional D2/D3 receptor binding did not vary from previous studies with adult rhesus monkeys, with: putamen>caudate>ventral striatum>amygdala approximately substantia nigra>medial dorsal thalamus>lateral temporal cortex approximately frontal cortex. The DVR coefficient of variation ranged from 14%-26%, with the greatest variance seen in the head of the caudate. There were significant sex differences in [F-18]fallypride kinetics in the pituitary gland, but this was not observed for regions within the blood-brain barrier. Furthermore, no regions in the brain showed significant sex or age related differences in DVR within this small age range. Based on a wide range of injected fallypride mass across the cohort, significant competition effects could only be detected in the substantia nigra, thalamus, and frontal cortex, and were not evident above intersubject variability in all other regions. CONCLUSION: These data represent the first report of large cohort in vivo D2/D3 dopamine whole brain binding in the adolescent brain and will serve as a valuable comparison for understanding dopamine changes during this critical time of development and provide a framework for creating a dopaminergic biochemical atlas for the rhesus monkey.
Zotero Collections:

Pseudoneglect is traditionally viewed as reflecting right hemisphere specialization for processing spatial information, resulting in orienting toward the contralateral, left, hemispace. Recent evidence suggests that healthy individuals differ from each other in both direction and magnitude of orienting bias, and moreover, the bias displayed by a person is consistent across time, suggesting that it may represent a trait of the individual. Animal studies reveal consistent orienting bias within an individual, which reflects asymmetry in dopaminergic brain systems. We measured basal D2-like receptor binding using positron emission tomography and the high-affinity ligand [F-18]fallypride, to test the hypothesis that asymmetry in dopaminergic neurotransmission in healthy humans modulates the orienting bias in humans. As predicted, we found that individual differences in the direction and magnitude of the orienting bias were strongly associated with the pattern of asymmetric binding of dopamine (DA) D2 receptors in the striatum, as well as clusters in the frontal and temporal cortex. These findings show for the first time that orienting bias reflects individual differences in the lateralization of DA systems in the healthy human brain.
Zotero Collections:

OBJECTIVE: This study was undertaken to identify brain structures associated with emotion in normal elderly subjects. METHOD: Eight normal subjects aged 55-78 years were shown film clips intended to provoke the emotions of happiness, fear, or disgust as well as a neutral state. During emotional activation, regional cerebral blood flow was measured with the use of [15O]H2O positron emission tomography imaging, and subjective emotional responses were recorded. Data were analyzed by subtracting the values during the neutral condition from the values in the various emotional activations. RESULTS: The stimuli produced a general activation in visual pathways that included the primary and secondary visual cortex, involving regions associated with object and spatial recognition. In addition, the specific emotions produced different regional limbic activations, which suggests that different pathways may be used for different types of emotional stimuli. CONCLUSIONS: Emotional activation in normal elderly subjects was associated with increases in blood flow in limbic and paralimbic brain structures. Brain activation may be specific to the emotion being elicited but probably involves complex sensory, association, and memory circuitry. Further studies are needed to identify activations that are specific for emotion.
Zotero Collections:

BACKGROUND: Relationships between aberrant social functioning and depression have been explored via behavioral, clinical, and survey methodologies, highlighting their importance in the etiology of depression. The neural underpinnings of these relationships, however, have not been explored. METHODS: Nine depressed participants and 14 never-depressed control subjects viewed emotional and neutral pictures at two functional magnetic resonance imaging (fMRI) scanning sessions approximately 22 weeks apart. In the interim, depressed patients received the antidepressant Venlafaxine. Positively rated images were parsed into three separate comparisons: social interaction, human faces, and sexual images; across scanning session, activation to these images was compared with other positively rated images. RESULTS: For each of the three social stimulus types (social interaction, faces, sexual images), a distinguishable circuitry was activated equally in non-depressed control subjects and post-treatment depressed subjects but showed a hypo-response in the depressed group pre-treatment. These structures include regions of prefrontal, temporal, and parietal cortices, insula, basal ganglia, and the hippocampus. CONCLUSIONS: The neural hypo-response to positively valenced social stimuli that is observed in depression remits as response to antidepressant medication occurs, suggesting a state-dependent deficiency in response to positive social incentives. These findings underscore the importance of addressing social dysfunction in research and treatment of depression.
Zotero Collections:

The LASS theory proposes that Language and Situated Simulation both play central roles in conceptual processing. Depending on stimuli and task conditions, different mixtures of language and simulation occur. When a word is processed in a conceptual task, it first activates other linguistic forms, such as word associates. More slowly, the word activates a situated simulation to represent its meaning in neural systems for perception, action, and mental states. An fMRI experiment tested the LASS account. In a first scanning session, participants performed the property generation task to provide a measure of conceptual processing. In a second scanning session a week later, participants performed two localizer tasks measuring word association and situated simulation. Conjunction analyses supported predictions of the LASS theory. Activations early in conceptual processing overlapped with activations for word association. Activations late in conceptual processing overlapped with activations for situation generation. These results, along with others in the literature, indicate that conceptual processing uses multiple representations, not one. Furthermore, researchers must be careful drawing conclusions about conceptual processing, given that different paradigms are likely to produce different mixtures of language and simulation. Whereas some paradigms produce high levels of linguistic processing and low levels of simulation, other paradigms produce the opposite pattern.
Zotero Collections:

Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Zotero Collections:

According to the Conceptual Act Theory of Emotion, the situated conceptualization used to construe a situation determines the emotion experienced. A neuroimaging experiment tested two core hypotheses of this theory: (1) different situated conceptualizations produce different forms of the same emotion in different situations, (2) the composition of a situated conceptualization emerges from shared multimodal circuitry distributed across the brain that produces emotional states generally. To test these hypotheses, the situation in which participants experienced an emotion was manipulated. On each trial, participants immersed themselves in a physical danger or social evaluation situation and then experienced fear or anger. According to Hypothesis 1, the brain activations for the same emotion should differ as a function of the preceding situation (after removing activations that arose while constructing the situation). According to Hypothesis 2, the critical activations should reflect conceptual processing relevant to the emotion in the current situation, drawn from shared multimodal circuitry underlying emotion. The results supported these predictions and demonstrated the compositional process that produces situated conceptualizations dynamically.
Zotero Collections:

OBJECTIVE: Positron emission tomography was used to investigate the neural substrates of normal human emotional and their dependence on the types of emotional stimulus. METHOD: Twelve healthy female subjects underwent 12 measurements of regional brain activity following the intravenous bolus administration of [15O]H2O as they alternated between emotion-generating and control film and recall tasks. Automated image analysis techniques were used to characterize and compare the increases in regional brain activity associated with the emotional response to complex visual (film) and cognitive (recall) stimuli. RESULTS: Film- and recall-generated emotion were each associated with significantly increased activity in the vicinity of the medial prefrontal cortex and thalamus, suggesting that these regions participate in aspects of emotion that do not depend on the nature of the emotional stimulus. Film-generated emotion was associated with significantly greater increases in activity bilaterally in the occipitotemporparietal cortex, lateral cerebellum, hypothalamus, and a region that includes the anterior temporal cortex, amygdala, and hippocampal formation, suggesting that these regions participate in the emotional response to certain exteroceptive sensory stimuli. Recall-generated sadness was associated with significantly greater increases in activity in the vicinity of the anterior insular cortex, suggesting that this region participates in the emotional response to potentially distressing cognitive or interoceptive sensory stimuli. CONCLUSIONS: While this study should be considered preliminary, it identified brain regions that participate in externally and internally generated human emotion.
Zotero Collections:

OBJECTIVE: Happiness, sadness, and disgust are three emotions that differ in their valence (positive or negative) and associated action tendencies (approach or withdrawal). This study was designed to investigate the neuroanatomical correlates of these discrete emotions. METHOD: Twelve healthy female subjects were studied. Positron emission tomography and [15O]H2O were used to measure regional brain activity. There were 12 conditions per subject: happiness, sadness, and disgust and three control conditions, each induced by film and recall. Emotion and control tasks were alternated throughout. Condition order was pseudo-randomized and counterbalanced across subjects. Analyses focused on brain activity patterns for each emotion when combining film and recall data. RESULTS: Happiness, sadness, and disgust were each associated with increases in activity in the thalamus and medial prefrontal cortex (Brodmann's area 9). These three emotions were also associated with activation of anterior and posterior temporal structures, primarily when induced by film. Recalled sadness was associated with increased activation in the anterior insula. Happiness was distinguished from sadness by greater activity in the vicinity of ventral mesial frontal cortex. CONCLUSIONS: While this study should be considered preliminary, it identifies regions of the brain that participate in happiness, sadness, and disgust, regions that distinguish between positive and negative emotions, and regions that depend on both the elicitor and valence of emotion or their interaction.
Zotero Collections:

The length polymorphism of the serotonin (5-HT) transporter gene promoter region has been implicated in altered 5-HT function and, in turn, neuropsychiatric illnesses, such as anxiety and depression. The nonhuman primate has been used as a model to study anxiety-related mechanisms in humans based upon similarities in behavior and the presence of a similar 5-HT transporter gene polymorphism. Stressful and threatening contexts in the nonhuman primate model have revealed 5-HT transporter genotype dependent differences in regional glucose metabolism. Using the rhesus monkey, we examined the extent to which serotonin transporter genotype is associated with 5-HT transporter binding in brain regions implicated in emotion-related pathology. METHODS: Genotype data and high resolution PET scans were acquired in 29 rhesus (Macaca mulatta) monkeys. [C-11]DASB dynamic PET scans were acquired for 90 min in the anesthetized animals and images of distribution volume ratio (DVR) were created to serve as a metric of 5-HT transporter binding for group comparison based on a reference region method of analysis. Regional and voxelwise statistical analysis were performed with corrections for anatomical differences in gray matter probability, sex, age and radioligand mass. RESULTS: There were no significant differences when comparing l/l homozygotes with s-carriers in the regions of the brain implicated in anxiety and mood related illnesses (amygdala, striatum, thalamus, raphe nuclei, temporal and prefrontal cortex). There was a significant sex difference in 5-HT transporter binding in all regions with females having 18%-28% higher DVR than males. CONCLUSIONS: Because these findings are consistent with similar genotype findings in humans, this further strengthens the use of the rhesus model for studying anxiety-related neuropathologies.
Zotero Collections:

We used fMRI to examine amygdala activation in response to fearful facial expressions, measured over multiple scanning sessions. 15 human subjects underwent three scanning sessions, at 0, 2 and 8 weeks. During each session, functional brain images centered about the amygdala were acquired continuously while participants were shown alternating blocks of fearful, neutral and happy facial expressions. Intraclass correlation coefficients calculated across the sessions indicated stability of response in left amygdala to fearful faces (as a change from baseline), but considerably less left amygdala stability in responses to neutral expressions and for fear versus neutral contrasts. The results demonstrate that the measurement of fMRI BOLD responses in amygdala to fearful facial expressions might be usefully employed as an index of amygdala reactivity over extended periods. While signal change to fearful facial expressions appears robust, the experimental design employed here has yielded variable responsivity within baseline or comparison conditions. Future studies might manipulate the experimental design to either amplify or attenuate this variability, according to the goals of the research.
Zotero Collections:

[F-18]Mefway was developed to provide an F-18 labeled positron emission tomography (PET) neuroligand with high affinity for the serotonin 5-HT(1A) receptor to improve the in vivo assessment of the 5-HT(1A) system. The goal of this work was to compare the in vivo kinetics of [F-18]mefway, [F-18]MPPF, and [C-11]WAY100635 in the rhesus monkey. METHODS: Each of four monkeys were given bolus injections of [F-18]mefway, [C-11]WAY100635, and [F-18]MPPF and scans were acquired with a microPET P4 scanner. Arterial blood was sampled to assay parent compound throughout the time course of the PET experiment. Time activity curves were extracted in the high 5-HT(1A) binding areas of the anterior cingulate cortex (ACG), mesial temporal cortex, raphe nuclei, and insula cortex. Time activity curves were also extracted in the cerebellum, which was used as a reference region. The in vivo kinetics of the radiotracers were compared based on the nondisplaceable distribution volume (V(ND) ) and binding potential (BP(ND) ). RESULTS: At 30 min, the fraction of radioactivity in the plasma due to parent compound was 19%, 28%, and 29% and cleared from the arterial plasma at rates of 0.0031, 0.0078, and 0.0069 (min⁻¹) ([F-18]mefway, [F-18]MPPF, [C-11]WAY100635). The BP(ND) in the brain regions were mesial temporal cortex: 7.4 ± 0.6, 3.1 ± 0.4, 7.0 ± 1.2, ACG: 7.2 ± 1.2, 2.1 ± 0.2, 7.9 ± 1.2; raphe nuclei: 3.7 ± 0.6, 1.3 ± 0.3, 3.3 ± 0.7; and insula cortex: 4.2 ± 0.6, 1.2 ± 0.1, 4.7 ± 1.0 for [F-18]mefway, [F-18]MPPF, and [C-11]WAY100635 respectively. CONCLUSIONS: In the rhesus monkey, [F-18]mefway has similar in vivo kinetics to [C-11]WAY100635 and yields greater than 2-fold higher BP(ND) than [F-18]MPPF. These properties make [F-18]mefway a promising radiotracer for 5-HT(1A) assay, providing higher counting statistics and a greater dynamic range in BP(ND).
Zotero Collections: