Skip to main content Skip to search
Displaying 26 - 50 of 52

Pages

  • Page
  • of 3
<p>Mindfulness-based approaches are among the most innovative and interesting new approaches to mental health treatment. Mindfulness refers to patients developing an "awareness of present experience with acceptance." Interest in them is widespread, with presentations and workshops drawing large audiences all over the US and many other countries. This book provides a comprehensive introduction to the best-researched mindfulness-based treatments. It emphasizes detailed clinical illustration providing a close-up view of how these treatments are conducted, the skills required of therapists, and how they work. The book also has a solid foundation in theory and research and shows clearly how these treatments can be understood using accepted psychological principles and concepts. The evidence base for these treatments is concisely reviewed.* Comprehensive introduction to the best-researched mindfulness-based treatments* Covers wide range of problems &amp; disorders (anxiety, depression, eating, psychosis, personality disorders, stress, pain, relationship problems, etc)* Discusses a wide range of populations (children, adolescents, older adults, couples)* Includes wide range of settings (outpatient, inpatient, medical, mental health, workplace)* Clinically rich, illustrative case study in every chapter* International perspectives represented (authors from US, Canada, Britain, Sweden)</p>

This article presents a conceptual model for the mindfulness-based psychotherapeutic treatment of chronic pain. It describes the process of mindfulness meditation and places it in the context of a practical model for conceptualizing pain. It presents case vignettes on the phenomenology and treatment of chronic pain. Resources for mindfulness are presented.

The cognitive modulation of pain is influenced by a number of factors ranging from attention, beliefs, conditioning, expectations, mood, and the regulation of emotional responses to noxious sensory events. Recently, mindfulness meditation has been found attenuate pain through some of these mechanisms including enhanced cognitive and emotional control, as well as altering the contextual evaluation of sensory events. This review discusses the brain mechanisms involved in mindfulness meditation-related pain relief across different meditative techniques, expertise and training levels, experimental procedures, and neuroimaging methodologies. Converging lines of neuroimaging evidence reveal that mindfulness meditation-related pain relief is associated with unique appraisal cognitive processes depending on expertise level and meditation tradition. Moreover, it is postulated that mindfulness meditation-related pain relief may share a common final pathway with other cognitive techniques in the modulation of pain.

Meditation refers to a family of complex emotional and attentional regulatory practices, which can be classified into two main styles – focused attention (FA) and open monitoring (OM) – involving different attentional, cognitive monitoring and awareness processes. In a functional magnetic resonance study we originally characterized and contrasted FA and OM meditation forms within the same experiment, by an integrated FA–OM design. Theravada Buddhist monks, expert in both FA and OM meditation forms, and lay novices with 10 days of meditation practice, participated in the experiment. Our evidence suggests that expert meditators control cognitive engagement in conscious processing of sensory-related, thought and emotion contents, by massive self-regulation of fronto-parietal and insular areas in the left hemisphere, in a meditation state-dependent fashion. We also found that anterior cingulate and dorsolateral prefrontal cortices play antagonist roles in the executive control of the attention setting in meditation tasks. Our findings resolve the controversy between the hypothesis that meditative states are associated to transient hypofrontality or deactivation of executive brain areas, and evidence about the activation of executive brain areas in meditation. Finally, our study suggests that a functional reorganization of brain activity patterns for focused attention and cognitive monitoring takes place with mental practice, and that meditation-related neuroplasticity is crucially associated to a functional reorganization of activity patterns in prefrontal cortex and in the insula.

The scientific interest in meditation and mindfulness practice has recently seen an unprecedented surge. After an initial phase of presenting beneficial effects of mindfulness practice in various domains, research is now seeking to unravel the underlying psychological and neurophysiological mechanisms. Advances in understanding these processes are required for improving and fine-tuning mindfulness-based interventions that target specific conditions such as eating disorders or attention deficit hyperactivity disorders. This review presents a theoretical framework that emphasizes the central role of attentional control mechanisms in the development of mindfulness skills. It discusses the phenomenological level of experience during meditation, the different attentional functions that are involved, and relates these to the brain networks that subserve these functions. On the basis of currently available empirical evidence specific processes as to how attention exerts its positive influence are considered and it is concluded that meditation practice appears to positively impact attentional functions by improving resource allocation processes. As a result, attentional resources are allocated more fully during early processing phases which subsequently enhance further processing. Neural changes resulting from a pure form of mindfulness practice that is central to most mindfulness programs are considered from the perspective that they constitute a useful reference point for future research. Furthermore, possible interrelations between the improvement of attentional control and emotion regulation skills are discussed.

<p>Social neuro-science has recently started to investigate the neuronal mechanisms underlying our ability to understand the mental and emotional states of others. In this review, imaging research conducted on theory of mind (ToM or mentalizing) and empathy is selectively reviewed. It is proposed that even though these abilities are often used as synonyms in the literature these capacities represent different abilities that rely on different neuronal circuitry. ToM refers to our ability to understand mental states such as intentions, goals and beliefs, and relies on structures of the temporal lobe and the pre-frontal cortex. In contrast, empathy refers to our ability to share the feelings (emotions and sensations) of others and relies on sensorimotor cortices as well as limbic and para-limbic structures. It is further argued that the concept of empathy as used in lay terms refers to a multi-level construct extending from simple forms of emotion contagion to complex forms of cognitive perspective taking. Future research should investigate the relative contribution of empathizing and mentalizing abilities in the understanding of other people's states. Finally, it is suggested that the abilities to understand other people's thoughts and to share their affects display different ontogenetic trajectories reflecting the different developmental paths of their underlying neural structures. In particular, empathy develops much earlier than mentalizing abilities, because the former relys on limbic structures which develop early in ontogeny, whereas the latter rely on lateral temporal lobe and pre-frontal structures which are among the last to fully mature.</p>
Zotero Collections:

Concepts originating from ancient Eastern texts are now being explored scientifically, leading to new insights into mind/brain function. Meditative practice, often viewed as an emotion regulation strategy, has been associated with pain reduction, low pain sensitivity, chronic pain improvement, and thickness of pain-related cortices. Zen meditation is unlike previously studied emotion regulation techniques; more akin to ‘no appraisal’ than ‘reappraisal’. This implies the cognitive evaluation of pain may be involved in the pain-related effects observed in meditators. Using functional magnetic resonance imaging and a thermal pain paradigm we show that practitioners of Zen, compared to controls, reduce activity in executive, evaluative and emotion areas during pain (prefrontal cortex, amygdala, hippocampus). Meditators with the most experience showed the largest activation reductions. Simultaneously, meditators more robustly activated primary pain processing regions (anterior cingulate cortex, thalamus, insula). Importantly, the lower pain sensitivity in meditators was strongly predicted by reductions in functional connectivity between executive and pain-related cortices. Results suggest a functional decoupling of the cognitive-evaluative and sensory-discriminative dimensions of pain, possibly allowing practitioners to view painful stimuli more neutrally. The activation pattern is remarkably consistent with the mindset described in Zen and the notion of mindfulness. Our findings contrast and challenge current concepts of pain and emotion regulation and cognitive control; commonly thought to manifest through increased activation of frontal executive areas. We suggest it is possible to self-regulate in a more ‘passive’ manner, by reducing higher-order evaluative processes, as demonstrated here by the disengagement of anterior brain systems in meditators.

Pain can be modulated by several cognitive techniques, typically involving increased cognitive control and decreased sensory processing. Recently, it has been demonstrated that pain can also be attenuated by mindfulness. Here, we investigate the underlying brain mechanisms by which the state of mindfulness reduces pain. Mindfulness practitioners and controls received unpleasant electric stimuli in the functional magnetic resonance imaging scanner during a mindfulness and a control condition. Mindfulness practitioners, but not controls, were able to reduce pain unpleasantness by 22% and anticipatory anxiety by 29% during a mindful state. In the brain, this reduction was associated with decreased activation in the lateral prefrontal cortex and increased activation in the right posterior insula during stimulation and increased rostral anterior cingulate cortex activation during the anticipation of pain. These findings reveal a unique mechanism of pain modulation, comprising increased sensory processing and decreased cognitive control, and are in sharp contrast to established pain modulation mechanisms.

The purpose of the present study was twofold: (1) to obtain information on central mechanisms underlying cardiac self-regulation by comparing changes in cerebral asymmetry during self-control of heart rate with changes observed during the production of affective imagery; and (2) to explore sex differences in hemispheric function during performance of these two tasks. Heart rate (HR) and bilateral parietal EEG filtered for alpha were recorded from 20 right-handed males and females during two discrete experimental phases: cardiac control and image self-generation. HR showed significant effects between up versus down in prefeedback and feedback, and between anger versus relaxing imagery in the image phase. The EEG data indicated similar patterns of hemispheric asymmetry in both sexes during prefeedback. However, with the introduction of feedback, females shifted to greater relative right hemisphere activation comparable to what they show when specifically instructed to think emotional thoughts; males showed little differentiation between conditions. These data indicate that the Self-regulation of HR with biofeedback in males and females may be accomplished by the utilization of strategies involving different underlying patterns of neuropsychological processes.
Zotero Collections:

The response to painful stimulation depends not only on peripheral nociceptive input but also on the cognitive and affective context in which pain occurs. One contextual variable that affects the neural and behavioral response to nociceptive stimulation is the degree to which pain is perceived to be controllable. Previous studies indicate that perceived controllability affects pain tolerance, learning and motivation, and the ability to cope with intractable pain, suggesting that it has profound effects on neural pain processing. To date, however, no neuroimaging studies have assessed these effects. We manipulated the subjects' belief that they had control over a nociceptive stimulus, while the stimulus itself was held constant. Using functional magnetic resonance imaging, we found that pain that was perceived to be controllable resulted in attenuated activation in the three neural areas most consistently linked with pain processing: the anterior cingulate, insular, and secondary somatosensory cortices. This suggests that activation at these sites is modulated by cognitive variables, such as perceived controllability, and that pain imaging studies may therefore overestimate the degree to which these responses are stimulus driven and generalizable across cognitive contexts.
Zotero Collections:

Objective To investigate the effect of mindfulness training on pain tolerance, psychological well-being, physiological activity, and the acquisition of mindfulness skills. Methods Forty-two asymptomatic University students participated in a randomized, single-blind, active control pilot study. Participants in the experimental condition were offered six (1-h) mindfulness sessions; control participants were offered two (1-h) Guided Visual Imagery sessions. Both groups were provided with practice CDs and encouraged to practice daily. Pre–post pain tolerance (cold pressor test), mood, blood pressure, pulse, and mindfulness skills were obtained. Results Pain tolerance significantly increased in the mindfulness condition only. There was a strong trend indicating that mindfulness skills increased in the mindfulness condition, but this was not related to improved pain tolerance. Diastolic blood pressure significantly decreased in both conditions. Conclusion Mindfulness training did increase pain tolerance, but this was not related to the acquisition of mindfulness skills.

BACKGROUND: Despite the apparent high placebo response rate in randomized placebo-controlled trials (RCT) of patients with irritable bowel syndrome (IBS), little is known about the variability and predictors of this response. OBJECTIVES: To describe the magnitude of response in placebo arms of IBS clinical trials and to identify which factors predict the variability of the placebo response. METHODS: We performed a meta-analysis of published, English language, RCT with 20 or more IBS patients who were treated for at least 2 weeks. This analysis is limited to studies that assessed global response (improvement in overall symptoms). The variables considered as potential placebo modifiers were study design, study duration, use of a run-in phase, Jadad score, entry criteria, number of office visits, number of office visits/study duration, use of diagnostic testing, gender, age and type of medication studied. FINDINGS: Forty-five placebo-controlled RCTs met the inclusion criteria. The placebo response ranged from 16.0 to 71.4% with a population-weighted average of 40.2%, 95% CI (35.9-44.4). Significant associations with lower placebo response rates were fulfillment of the Rome criteria for study entry (P=0.049) and an increased number of office visits (P=0.026). CONCLUSIONS: Placebo effects in IBS clinical trials measuring a global outcome are highly variable. Entry criteria and number of office visits are significant predictors of the placebo response. More stringent entry criteria and an increased number of office visits appear to independently decrease the placebo response.
Zotero Collections:

The experience of pain arises from both physiological and psychological factors, including one's beliefs and expectations. Thus, placebo treatments that have no intrinsic pharmacological effects may produce analgesia by altering expectations. However, controversy exists regarding whether placebos alter sensory pain transmission, pain affect, or simply produce compliance with the suggestions of investigators. In two functional magnetic resonance imaging (fMRI) experiments, we found that placebo analgesia was related to decreased brain activity in pain-sensitive brain regions, including the thalamus, insula, and anterior cingulate cortex, and was associated with increased activity during anticipation of pain in the prefrontal cortex, providing evidence that placebos alter the experience of pain.
Zotero Collections:

This study, based on a sample of 172 children, examined the relation between average afternoon salivary cortisol levels measured at home at age 4.5 years and socioemotional adjustment a year and a half later, as reported by mothers, fathers, and teachers. Cortisol levels were hypothesized to be positively associated with withdrawal-type behaviors (e.g., internalizing, social wariness) and inversely related to approach-type behaviors, both negative and positive (e.g., externalizing, school engagement). Higher cortisol levels at age 4.5 predicted more internalizing behavior and social wariness as reported by teachers and mothers, although child gender moderated the relation between cortisol and mother report measures. An inverse relation was found between boys' cortisol levels and father report of externalizing behavior. A marginal inverse relation was found between child cortisol levels and teacher report of school engagement. Behavior assessed concurrently with cortisol collection did not account for the prospective relations observed,suggesting that cortisol adds uniquely to an understanding of behavioral development.
Zotero Collections:

Our objective was to conduct the first randomized controlled trial of the efficacy of a group mindfulness program aimed at reducing and preventing depression in an adolescent school-based population. For each of 12 pairs of parallel classes with students (age range 13–20) from five schools (N = 408), one class was randomly assigned to the mindfulness condition and one class to the control condition. Students in the mindfulness group completed depression assessments (the Depression Anxiety Stress Scales) prior to and immediately following the intervention and 6 months after the intervention. Control students completed the questionnaire at the same times as those in the mindfulness group. Hierarchical linear modeling showed that the mindfulness intervention showed significantly greater reductions (and greater clinically significant change) in depression compared with the control group at the 6-month follow-up. Cohen's d was medium sized (>.30) for both the pre-to-post and pre-to-follow-up effect for depressive symptoms in the mindfulness condition. The findings suggest that school-based mindfulness programs can help to reduce and prevent depression in adolescents.
Zotero Collections:

Patient–physician interactions significantly contribute to placebo effects and clinical outcomes. While the neural correlates of placebo responses have been studied in patients, the neurobiology of the clinician during treatment is unknown. This study investigated physicians’ brain activations during patient–physician interaction while the patient was experiencing pain, including a ‘treatment‘, ‘no-treatment’ and ‘control’ condition. Here, we demonstrate that physicians activated brain regions previously implicated in expectancy for pain–relief and increased attention during treatment of patients, including the right ventrolateral and dorsolateral prefrontal cortices. The physician’s ability to take the patients’ perspective correlated with increased brain activations in the rostral anterior cingulate cortex, a region that has been associated with processing of reward and subjective value. We suggest that physician treatment involves neural representations of treatment expectation, reward processing and empathy, paired with increased activation in attention-related structures. Our findings further the understanding of the neural representations associated with reciprocal interactions between clinicians and patients; a hallmark for successful treatment outcomes.
Zotero Collections:

The phenomenon of empathy entails the ability to share the affective experiences of others. In recent years social neuroscience made considerable progress in revealing the mechanisms that enable a person to feel what another is feeling. The present review provides an in-depth and critical discussion of these findings. Consistent evidence shows that sharing the emotions of others is associated with activation in neural structures that are also active during the first-hand experience of that emotion. Part of the neural activation shared between self- and other-related experiences seems to be rather automatically activated. However, recent studies also show that empathy is a highly flexible phenomenon, and that vicarious responses are malleable with respect to a number of factors—such as contextual appraisal, the interpersonal relationship between empathizer and other, or the perspective adopted during observation of the other. Future investigations are needed to provide more detailed insights into these factors and their neural underpinnings. Questions such as whether individual differences in empathy can be explained by stable personality traits, whether we can train ourselves to be more empathic, and how empathy relates to prosocial behavior are of utmost relevance for both science and society.
Zotero Collections:

The experience of pain occurs when the level of a stimulus is sufficient to elicit a marked affective response, putatively to warn the organism of potential danger and motivate appropriate behavioral responses. Understanding the biological mechanisms of the transition from innocuous to painful levels of sensation is essential to understanding pain perception as well as clinical conditions characterized by abnormal relationships between stimulation and pain response. Thus, the primary objective of this study was to characterize the neural response associated with this transition and the correspondence between that response and subjective reports of pain. Towards this goal, this study examined BOLD response profiles across a range of temperatures spanning the pain threshold. 14 healthy adults underwent functional magnetic resonance imaging (fMRI) while a range of thermal stimuli (44-49°C) were applied. BOLD responses showed a sigmoidal profile along the range of temperatures in a network of brain regions including insula and mid-cingulate, as well as a number of regions associated with motor responses including ventral lateral nuclei of the thalamus, globus pallidus and premotor cortex. A sigmoid function fit to the BOLD responses in these regions explained up to 85% of the variance in individual pain ratings, and yielded an estimate of the temperature of steepest transition from non-painful to painful heat that was nearly identical to that generated by subjective ratings. These results demonstrate a precise characterization of the relationship between objective levels of stimulation, resulting neural activation, and subjective experience of pain and provide direct evidence for a neural mechanism supporting the nonlinear transition from innocuous to painful levels along the sensory continuum.
Zotero Collections:

Most of the extant literature investigating the health effects of mindfulness interventions relies on wait-list control comparisons. The current article specifies and validates an active control condition, the Health Enhancement Program (HEP), thus providing the foundation necessary for rigorous investigations of the relative efficacy of Mindfulness Based Stress Reduction (MBSR) and for testing mindfulness as an active ingredient. 63 participants were randomized to either MBSR (n = 31) or HEP (n = 32). Compared to HEP, MBSR led to reductions in thermal pain ratings in the mindfulness- but not the HEP-related instruction condition (η(2) = .18). There were significant improvements over time for general distress (η(2) = .09), anxiety (η(2) = .08), hostility (η(2) = .07), and medical symptoms (η(2) = .14), but no effects of intervention. Practice was not related to change. HEP is an active control condition for MBSR while remaining inert to mindfulness. These claims are supported by results from a pain task. Participant-reported outcomes (PROs) replicate previous improvements to well-being in MBSR, but indicate that MBSR is no more effective than a rigorous active control in improving these indices. These results emphasize the importance of using an active control condition like HEP in studies evaluating the effectiveness of MBSR.
Zotero Collections:

Recent neuroimaging and neuropsychological work has begun to shed light on how the brain responds to the viewing of facial expressions of emotion. However, one important category of facial expression that has not been studied on this level is the facial expression of pain. We investigated the neural response to pain expressions by performing functional magnetic resonance imaging (fMRI) as subjects viewed short video sequences showing faces expressing either moderate pain or, for comparison, no pain. In alternate blocks, the same subjects received both painful and non-painful thermal stimulation. Facial expressions of pain were found to engage cortical areas also engaged by the first-hand experience of pain, including anterior cingulate cortex and insula. The reported findings corroborate other work in which the neural response to witnessed pain has been examined from other perspectives. In addition, they lend support to the idea that common neural substrates are involved in representing one's own and others' affective states.
Zotero Collections:

Reputation systems promote cooperation and deter antisocial behavior in groups. Little is known, however, about how and why people share reputational information. Here, we seek to establish the existence and dynamics of prosocial gossip, the sharing of negative evaluative information about a target in a way that protects others from antisocial or exploitative behavior. We present a model of prosocial gossip and the results of 4 studies testing the model's claims. Results of Studies 1 through 3 demonstrate that (a) individuals who observe an antisocial act experience negative affect and are compelled to share information about the antisocial actor with a potentially vulnerable person, (b) sharing such information reduces negative affect created by observing the antisocial behavior, and (c) individuals possessing more prosocial orientations are the most motivated to engage in such gossip, even at a personal cost, and exhibit the greatest reduction in negative affect as a result. Study 4 demonstrates that prosocial gossip can effectively deter selfishness and promote cooperation. Taken together these results highlight the roles of prosocial motivations and negative affective reactions to injustice in maintaining reputational information sharing in groups. We conclude by discussing implications for reputational theories of the maintenance of cooperation in human groups.
Zotero Collections:

Pages

  • Page
  • of 3