Skip to main content Skip to search
Displaying 1 - 25 of 82

Pages

  • Page
  • of 4
Anxious temperament (AT) in human and non-human primates is a trait-like phenotype evident early in life that is characterized by increased behavioural and physiological reactivity to mildly threatening stimuli. Studies in children demonstrate that AT is an important risk factor for the later development of anxiety disorders, depression and comorbid substance abuse. Despite its importance as an early predictor of psychopathology, little is known about the factors that predispose vulnerable children to develop AT and the brain systems that underlie its expression. To characterize the neural circuitry associated with AT and the extent to which the function of this circuit is heritable, we studied a large sample of rhesus monkeys phenotyped for AT. Using 238 young monkeys from a multigenerational single-family pedigree, we simultaneously assessed brain metabolic activity and AT while monkeys were exposed to the relevant ethological condition that elicits the phenotype. High-resolution (18)F-labelled deoxyglucose positron-emission tomography (FDG-PET) was selected as the imaging modality because it provides semi-quantitative indices of absolute glucose metabolic rate, allows for simultaneous measurement of behaviour and brain activity, and has a time course suited for assessing temperament-associated sustained brain responses. Here we demonstrate that the central nucleus region of the amygdala and the anterior hippocampus are key components of the neural circuit predictive of AT. We also show significant heritability of the AT phenotype by using quantitative genetic analysis. Additionally, using voxelwise analyses, we reveal significant heritability of metabolic activity in AT-associated hippocampal regions. However, activity in the amygdala region predictive of AT is not significantly heritable. Furthermore, the heritabilities of the hippocampal and amygdala regions significantly differ from each other. Even though these structures are closely linked, the results suggest differential influences of genes and environment on how these brain regions mediate AT and the ongoing risk of developing anxiety and depression.
Zotero Collections:

Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Our results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes.
Zotero Collections:

The amygdalae are important, if not critical, brain regions for many affective, attentional and memorial processes, and dysfunction of the amygdalae has been a consistent finding in the study of clinical depression. Theoretical models of the functional neuroanatomy of both normal and psychopathological affective processes which posit cortical hemispheric specialization of functions have been supported by both lesion and functional neuroimaging studies in humans. Results from human neuroimaging studies in support of amygdalar hemispheric specialization are inconsistent. However, recent results from human lesion studies are consistent with hemispheric specialization. An important, yet largely ignored, feature of the amygdalae in the primate brain--derived from both neuroanatomical and electrophysiological data--is that there are virtually no direct interhemispheric connections via the anterior commissure (AC). This feature stands in stark contrast to that of the rodent brain wherein virtually all amygdalar nuclei have direct interhemispheric connections. We propose this feature of the primate brain, in particular the human brain, is a result of influences from frontocortical hemispheric specialization which have developed over the course of primate brain evolution. Results consistent with this notion were obtained by examining the nature of human amygdalar interhemispheric connectivity using both functional magnetic resonance imaging (FMRI) and positron emission tomography (PET). We found modest evidence of amygdalar interhemispheric functional connectivity in the non-depressed brain, whereas there was strong evidence of functional connectivity in the depressed brain. We interpret and discuss the nature of this connectivity in the depressed brain in the context of dysfunctional frontocortical-amygdalar interactions which accompany clinical depression.
Zotero Collections:

OBJECTIVE: The anterior cingulate cortex has been implicated in depression. Results are best interpreted by considering anatomic and cytoarchitectonic subdivisions. Evidence suggests depression is characterized by hypoactivity in the dorsal anterior cingulate, whereas hyperactivity in the rostral anterior cingulate is associated with good response to treatment. The authors tested the hypothesis that activity in the rostral anterior cingulate during the depressed state has prognostic value for the degree of eventual response to treatment. Whereas prior studies used hemodynamic imaging, this investigation used EEG. METHOD: The authors recorded 28-channel EEG data for 18 unmedicated patients with major depression and 18 matched comparison subjects. Clinical outcome was assessed after nortriptyline treatment. Of the 18 depressed patients, 16 were considered responders 4-6 months after initial assessment. A median split was used to classify response, and the pretreatment EEG data of patients showing better (N=9) and worse (N=9) responses were analyzed with low-resolution electromagnetic tomography, a new method to compute three-dimensional cortical current density for given EEG frequency bands according to a Talairach brain atlas. RESULTS: The patients with better responses showed hyperactivity (higher theta activity) in the rostral anterior cingulate (Brodmann's area 24/32). Follow-up analyses demonstrated the specificity of this finding, which was not confounded by age or pretreatment depression severity. CONCLUSIONS: These results, based on electrophysiological imaging, not only support hemodynamic findings implicating activation of the anterior cingulate as a predictor of response in depression, but they also suggest that differential activity in the rostral anterior cingulate is associated with gradations of response.
Zotero Collections:

This article reviews the modern literature on two key aspects of the central circuitry of emotion: the prefrontal cortex (PFC) and the amygdala. There are several different functional divisions of the PFC, including the dorsolateral, ventromedial, and orbital sectors. Each of these regions plays some role in affective processing that shares the feature of representing affect in the absence of immediate rewards and punishments as well as in different aspects of emotional regulation. The amygdala appears to be crucial for the learning of new stimulus-threat contingencies and also appears to be important in the expression of cue-specific fear. Individual differences in both tonic activation and phasic reactivity in this circuit play an important role in governing different aspects of anxiety. Emphasis is placed on affective chronometry, or the time course of emotional responding, as a key attribute of individual differences in propensity for anxiety that is regulated by this circuitry.
Zotero Collections:

This study compared the asymmetry of different features of brain electrical activity during the performance of a verbal task (word finding) and a spatial task (dot localization) that had been carefully matched on psychometric properties and accompanying motor activity. Nineteen right-handed subjects were tested. EEG was recorded from F3, F4, C3, C4, P3, and P4, referred to both CZ and computer-derived averaged-ears references, and Fourier transformed. Power in the delta, theta, alpha, and beta bands was computed. There were significant Task X Hemisphere effects in all bands for CZ-referenced data and for the alpha and beta bands for ears-referenced data. The effects were always either greater power suppression in the hemisphere putatively most engaged in task processing or greater power in the opposite hemisphere. Correlations between EEG and task performance indicated that CZ-referenced parietal alpha asymmetry accounted for the most variance in verbal task performance. Power within individual hemispheres or across hemispheres was unrelated to task performance. The findings indicate robust differences in asymmetrical brain physiology that are produced by well-matched verbal and spatial cognitive tasks.
Zotero Collections:

Thirty-two participants were tested for both resting electroencephalography (EEG) and neuropsychological function. Eight one-minute trials of resting EEG were recorded from 14 channels referenced to linked ears, which was rederived to an average reference. Neuropsychological tasks included Verbal Fluency, the Tower of London, and Corsi's Recurring Blocks. Asymmetries in EEG alpha activity were correlated with performance on these tasks. Similar patterns were obtained for delta and theta bands. Factor analyses of resting EEG asymmetries over particular regions suggested that asymmetries over anterior scalp regions may be partly independent from those over posterior scalp regions. These results support the notions that resting EEG asymmetries are specified by multiple mechanisms along the rostral/caudal plane, and that these asymmetries predict task performance in a manner consistent with lesion and neuroimaging studies.
Zotero Collections:

The brain and the cardiovascular system influence each other during the processing of emotion. The study of the interactions of these systems during emotion regulation has been limited in human functional neuroimaging, despite its potential importance for physical health. We have previously reported that mental expertise in cultivation of compassion alters the activation of circuits linked with empathy and theory of mind in response to emotional stimuli. Guided by the finding that heart rate increases more during blocks of compassion meditation than neutral states, especially for experts, we examined the interaction between state (compassion vs. neutral) and group (novice, expert) on the relation between heart rate and BOLD signal during presentation of emotional sounds presented during each state. Our findings revealed that BOLD signal in the right middle insula showed a significant association with heart rate (HR) across state and group. This association was stronger in the left middle/posterior insula when experts were compared to novices. The positive coupling of HR and BOLD was higher within the compassion state than within the neutral state in the dorsal anterior cingulate cortex for both groups, underlining the role of this region in the modulation of bodily arousal states. This state effect was stronger for experts than novices in somatosensory cortices and the right inferior parietal lobule (group by state interaction). These data confirm that compassion enhances the emotional and somatosensory brain representations of others' emotions, and that this effect is modulated by expertise. Future studies are needed to further investigate the impact of compassion training on these circuits.
Zotero Collections:

BACKGROUND: The frontal lobe has been crucially involved in the neurobiology of major depression, but inconsistencies among studies exist, in part due to a failure of considering modulatory variables such as symptom severity, comorbidity with anxiety, and distinct subtypes, as codeterminants for patterns of brain activation in depression. METHODS: Resting electroencephalogram was recorded in 38 unmedicated subjects with major depressive disorder and 18 normal comparison subjects, and analyzed with a tomographic source localization method that computes the cortical three-dimensional distribution of current density for standard electroencephalogram frequency bands. Symptom severity and anxiety were measured via self-report and melancholic features via clinical interview. RESULTS: Depressed subjects showed more excitatory (beta3, 21.5-30.0 Hz) activity in the right superior and inferior frontal lobe (Brodmann's area 9/10/11) than comparison subjects. In melancholic subjects, this effect was particularly pronounced for severe depression, and right frontal activity correlated positively with anxiety. Depressed subjects showed posterior cingulate and precuneus hypoactivity. CONCLUSIONS: While confirming prior results implicating right frontal and posterior cingulate regions, this study highlights the importance of depression severity, anxiety, and melancholic features in patterns of brain activity accompanying depression.
Zotero Collections:

The anterior medial prefrontal (AMPFC) and retrosplenial (RSC) cortices are active during self-referential decision-making tasks such as when participants appraise traits and abilities, or current affect. Other appraisal tasks requiring an evaluative decision or mental representation, such as theory of mind and perspective-taking tasks, also involve these regions. In many instances, these types of decisions involve a subjective opinion or preference, but also a degree of ambiguity in the decision, rather than a strictly veridical response. However, this ambiguity is generally not controlled for in studies that examine self-referential decision-making. In this functional magnetic resonance imaging experiment with 17 healthy adults, we examined neural processes associated with subjective decision-making with and without an overt self-referential component. The task required subjective decisions about colors-regarding self-preference (internal subjective decision) or color similarity (external subjective decision) under conditions where there was no objectively correct response. Results indicated greater activation in the AMPFC, RSC, and caudate nucleus during internal subjective decision-making. The findings suggest that self-referential processing, rather than subjective judgments among ambiguous response alternatives, accounted for the AMPFC and RSC response.
Zotero Collections:

Functional neuroimaging research has demonstrated that retrieving information about object-associated colors activates the left fusiform gyrus in posterior temporal cortex. Although regions near the fusiform have previously been implicated in color perception, it remains unclear whether color knowledge retrieval actually activates the color perception system. Evidence to this effect would be particularly strong if color perception cortex was activated by color knowledge retrieval triggered strictly with linguistic stimuli. To address this question, subjects performed two tasks while undergoing fMRI. First, subjects performed a property verification task using only words to assess conceptual knowledge. On each trial, subjects verified whether a named color or motor property was true of a named object (e.g., TAXI-yellow, HAIR-combed). Next, subjects performed a color perception task. A region of the left fusiform gyrus that was highly responsive during color perception also showed greater activity for retrieving color than motor property knowledge. These data provide the first evidence for a direct overlap in the neural bases of color perception and stored information about object-associated color, and they significantly add to accumulating evidence that conceptual knowledge is grounded in the brain's modality-specific systems.
Zotero Collections:

The authors compared 12 pairs of cerebral [18F]-fluoro-deoxyglucose (FDG) 2D/3D image sets from a GE/Advance PET scanner, incorporating the actual corrections used on human subjects. Differences in resolution consistent with other published values were found. There is a significant difference in axial resolution between 2D and 3D, and the authors focused on this as it is a scanner feature that cannot be readily changed. Previously published values for spatial axial resolution in 2D and 3D modes were used to model the differential axial smoothing at each image voxel. This model was applied to the 2D FDG images, and the resulting smoothed data indicate the published differences in axial resolution between 2D and 3D modes can account for 30-40% of the differences between these image sets. The authors then investigated the effect this difference might have on analysis typically performed on human FDG data. A phantom containing spherical hot- and cool-spots in a warm background to mimic a typical human cerebral FDG PET scan was scanned for a variety of time durations (30, 15, 5, 1 min). Only for the 1-minute frame (total counts 2D:6M, 3D:30M) is there an advantage to using 3D mode; for the longer frames which are more typical of a human FDG protocol, the reliability for extracting regions-of-interest is the same for either mode while 2D mode shows better quantitative accuracy
Zotero Collections:

Motion correction of fMRI data is a widely used step prior to data analysis. In this study, a comparison of the motion correction tools provided by several leading fMRI analysis software packages was performed, including AFNI, AIR, BrainVoyager, FSL, and SPM2. Comparisons were performed using data from typical human studies as well as phantom data. The identical reconstruction, preprocessing, and analysis steps were used on every data set, except that motion correction was performed using various configurations from each software package. Each package was studied using default parameters, as well as parameters optimized for speed and accuracy. Forty subjects performed a Go/No-go task (an event-related design that investigates inhibitory motor response) and an N-back task (a block-design paradigm investigating working memory). The human data were analyzed by extracting a set of general linear model (GLM)-derived activation results and comparing the effect of motion correction on thresholded activation cluster size and maximum t value. In addition, a series of simulated phantom data sets were created with known activation locations, magnitudes, and realistic motion. Results from the phantom data indicate that AFNI and SPM2 yield the most accurate motion estimation parameters, while AFNI's interpolation algorithm introduces the least smoothing. AFNI is also the fastest of the packages tested. However, these advantages did not produce noticeably better activation results in motion-corrected data from typical human fMRI experiments. Although differences in performance between packages were apparent in the human data, no single software package produced dramatically better results than the others. The "accurate" parameters showed virtually no improvement in cluster t values compared to the standard parameters. While the "fast" parameters did not result in a substantial increase in speed, they did not degrade the cluster results very much either. The phantom and human data indicate that motion correction can be a valuable step in the data processing chain, yielding improvements of up to 20% in the magnitude and up to 100% in the cluster size of detected activations, but the choice of software package does not substantially affect this improvement.
Zotero Collections:

We present a novel data smoothing and analysis framework for cortical thickness data defined on the brain cortical manifold. Gaussian kernel smoothing, which weights neighboring observations according to their 3D Euclidean distance, has been widely used in 3D brain images to increase the signal-to-noise ratio. When the observations lie on a convoluted brain surface, however, it is more natural to assign the weights based on the geodesic distance along the surface. We therefore develop a framework for geodesic distance-based kernel smoothing and statistical analysis on the cortical manifolds. As an illustration, we apply our methods in detecting the regions of abnormal cortical thickness in 16 high functioning autistic children via random field based multiple comparison correction that utilizes the new smoothing technique.
Zotero Collections:

Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.
Zotero Collections:

In rodents, theta rhythm has been linked to the hippocampal formation, as well as other regions, including the anterior cingulate cortex (ACC). To test the role of the ACC in theta rhythm, concurrent measurements of brain electrical activity (EEG) and glucose metabolism (PET) were performed in 29 subjects at baseline. EEG data were analyzed with a source localization technique that enabled voxelwise correlations of EEG and PET data. For theta, but not other bands, the rostral ACC (Brodmann areas 24/32) was the largest cluster with positive correlations between current density and glucose metabolism. Positive correlations were also found in right fronto-temporal regions. In control but not depressed subjects, theta within ACC and prefrontal/orbitofrontal regions was positively correlated. The results reveal a link between theta and cerebral metabolism in the ACC as well as disruption of functional connectivity within frontocingulate pathways in depression.
Zotero Collections:

The corticotrophin-releasing hormone (CRH) system integrates the stress response and is associated with stress-related psychopathology. Previous reports have identified interactions between childhood trauma and sequence variation in the CRH receptor 1 gene (CRHR1) that increase risk for affective disorders. However, the underlying mechanisms that connect variation in CRHR1 to psychopathology are unknown. To explore potential mechanisms, we used a validated rhesus macaque model to investigate association between genetic variation in CRHR1, anxious temperament (AT) and brain metabolic activity. In young rhesus monkeys, AT is analogous to the childhood risk phenotype that predicts the development of human anxiety and depressive disorders. Regional brain metabolism was assessed with (18)F-labeled fluoro-2-deoxyglucose (FDG) positron emission tomography in 236 young, normally reared macaques that were also characterized for AT. We show that single nucleotide polymorphisms (SNPs) affecting exon 6 of CRHR1 influence both AT and metabolic activity in the anterior hippocampus and amygdala, components of the neural circuit underlying AT. We also find evidence for association between SNPs in CRHR1 and metabolism in the intraparietal sulcus and precuneus. These translational data suggest that genetic variation in CRHR1 affects the risk for affective disorders by influencing the function of the neural circuit underlying AT and that differences in gene expression or the protein sequence involving exon 6 may be important. These results suggest that variation in CRHR1 may influence brain function before any childhood adversity and may be a diathesis for the interaction between CRHR1 genotypes and childhood trauma reported to affect human psychopathology.
Zotero Collections:

PET imaging of the neuroreceptor systems in the brain has earned a prominent role in studying normal development, neuropsychiatric illness and developing targeted drugs. The dopaminergic system is of particular interest due to its role in the development of cognitive function and mood as well as its suspected involvement in neuropsychiatric illness. Nonhuman primate animal models provide a valuable resource for relating neurochemical changes to behavior. To facilitate comparison within and between primate models, we report in vivo D2/D3 binding in a large cohort of adolescent rhesus monkeys. METHODS: In this work, the in vivo D2/D3 dopamine receptor availability was measured in a cohort of 33 rhesus monkeys in the adolescent stage of development (3.2-5.3 years). Both striatal and extrastriatal D2/D3 binding were measured using [F-18]fallypride with a high resolution small animal PET scanner. The distribution volume ratio (DVR) was measured for all subjects and group comparisons of D2/D3 binding among the cohort were made based on age and sex. Because two sequential studies were acquired from a single [F-18]fallypride batch, the effect of competing (unlabeled) ligand mass was also investigated. RESULTS: Among this cohort, the rank order of regional D2/D3 receptor binding did not vary from previous studies with adult rhesus monkeys, with: putamen>caudate>ventral striatum>amygdala approximately substantia nigra>medial dorsal thalamus>lateral temporal cortex approximately frontal cortex. The DVR coefficient of variation ranged from 14%-26%, with the greatest variance seen in the head of the caudate. There were significant sex differences in [F-18]fallypride kinetics in the pituitary gland, but this was not observed for regions within the blood-brain barrier. Furthermore, no regions in the brain showed significant sex or age related differences in DVR within this small age range. Based on a wide range of injected fallypride mass across the cohort, significant competition effects could only be detected in the substantia nigra, thalamus, and frontal cortex, and were not evident above intersubject variability in all other regions. CONCLUSION: These data represent the first report of large cohort in vivo D2/D3 dopamine whole brain binding in the adolescent brain and will serve as a valuable comparison for understanding dopamine changes during this critical time of development and provide a framework for creating a dopaminergic biochemical atlas for the rhesus monkey.
Zotero Collections:

Pseudoneglect is traditionally viewed as reflecting right hemisphere specialization for processing spatial information, resulting in orienting toward the contralateral, left, hemispace. Recent evidence suggests that healthy individuals differ from each other in both direction and magnitude of orienting bias, and moreover, the bias displayed by a person is consistent across time, suggesting that it may represent a trait of the individual. Animal studies reveal consistent orienting bias within an individual, which reflects asymmetry in dopaminergic brain systems. We measured basal D2-like receptor binding using positron emission tomography and the high-affinity ligand [F-18]fallypride, to test the hypothesis that asymmetry in dopaminergic neurotransmission in healthy humans modulates the orienting bias in humans. As predicted, we found that individual differences in the direction and magnitude of the orienting bias were strongly associated with the pattern of asymmetric binding of dopamine (DA) D2 receptors in the striatum, as well as clusters in the frontal and temporal cortex. These findings show for the first time that orienting bias reflects individual differences in the lateralization of DA systems in the healthy human brain.
Zotero Collections:

Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan-rescan reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal Modeling (DCM) in scans taken in the same scan session, less than 5 min apart. We find fair to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI data.
Zotero Collections:

Individual variation in the experience and expression of pleasure may relate to differential patterns of lateral frontal activity. Brain electrical measures have been used to study the asymmetric involvement of lateral frontal cortex in positive emotion, but the excellent time resolution of these measures has not been used to capture second-by-second changes in ongoing emotion until now. The relationship between pleasure and second-by-second lateral frontal activity was examined with the use of hierarchical linear modeling in a sample of 128 children ages 6-10 years. Electroencephalographic activity was recorded during "pop-out toy," a standardized task that elicits pleasure. The task consisted of 3 epochs: an anticipation period sandwiched between 2 play periods. The amount of pleasure expressed during the task predicted the pattern of nonlinear change in lateral frontal activity. Children who expressed increasing amounts of pleasure during the task exhibited increasing left lateral frontal activity during the task, whereas children who expressed contentment exhibited increasing right/decreasing left activity. These findings indicate that task-dependent changes in pleasure relate to dynamic, nonlinear changes in lateral frontal activity as the task unfolds.
Zotero Collections:

Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.
Zotero Collections:

Muscle or electromyogenic (EMG) artifact poses a serious risk to inferential validity for any electroencephalography (EEG) investigation in the frequency-domain owing to its high amplitude, broad spectrum, and sensitivity to psychological processes of interest. Even weak EMG is detectable across the scalp in frequencies as low as the alpha band. Given these hazards, there is substantial interest in developing EMG correction tools. Unfortunately, most published techniques are subjected to only modest validation attempts, rendering their utility questionable. We review recent work by our laboratory quantitatively investigating the validity of two popular EMG correction techniques, one using the general linear model (GLM), the other using temporal independent component analysis (ICA). We show that intra-individual GLM-based methods represent a sensitive and specific tool for correcting on-going or induced, but not evoked (phase-locked) or source-localized, spectral changes. Preliminary work with ICA shows that it may not represent a panacea for EMG contamination, although further scrutiny is strongly warranted. We conclude by describing emerging methodological trends in this area that are likely to have substantial benefits for basic and applied EEG research.
Zotero Collections:

OBJECTIVE: This study was undertaken to identify brain structures associated with emotion in normal elderly subjects. METHOD: Eight normal subjects aged 55-78 years were shown film clips intended to provoke the emotions of happiness, fear, or disgust as well as a neutral state. During emotional activation, regional cerebral blood flow was measured with the use of [15O]H2O positron emission tomography imaging, and subjective emotional responses were recorded. Data were analyzed by subtracting the values during the neutral condition from the values in the various emotional activations. RESULTS: The stimuli produced a general activation in visual pathways that included the primary and secondary visual cortex, involving regions associated with object and spatial recognition. In addition, the specific emotions produced different regional limbic activations, which suggests that different pathways may be used for different types of emotional stimuli. CONCLUSIONS: Emotional activation in normal elderly subjects was associated with increases in blood flow in limbic and paralimbic brain structures. Brain activation may be specific to the emotion being elicited but probably involves complex sensory, association, and memory circuitry. Further studies are needed to identify activations that are specific for emotion.
Zotero Collections:

<p>In two prior studies, we investigated the neural mechanisms of spatial attention using a combined event-related potential (ERP) and positron emission tomography (PET) approach (Heinze et al. [1994]: Nature 392:543-546; Mangun et al. [1997]: Hum Brain Mapp 5:273-279). Neural activations in extrastriate cortex were observed in the PET measures for attended stimuli, and these effects were related to attentional modulations in the ERPs at specific latencies. The present study used functional magnetic resonance imaging (fMRI) and ERPs in single subjects to investigate the intersubject variability in extrastriate spatial attention effects, and to qualitatively compare this to variations in ERP attention effects. Activations in single subjects replicated our prior group-averaged PET findings, showing attention-related increases in blood flow in the posterior fusiform and middle occipital gyri in the hemisphere contralateral to attended visual stimuli. All subjects showed attentional modulations of the occipital P1 component of the ERPs. These findings in single subjects demonstrate the consistency of extrastriate attention effects, and provide information about the feasibility of this approach for integration of electrical and functional imaging data.</p>
Zotero Collections:

Pages

  • Page
  • of 4