Displaying 1 - 7 of 7
To test the effects of cortisol on affective experience, the authors orally administered a placebo, 20 mg cortisol, or 40 mg cortisol to 85 men. Participants' affective responses to negative and neutral stimuli were measured. Self-reported affective state was also assessed. Participants in the 40-mg group (showing extreme cortisol elevations within the physiological range) rated neutral stimuli as more highly arousing than did participants in the placebo and 20-mg groups. Furthermore, within the 20-mg group, individuals with higher cortisol elevations made higher arousal ratings of neutral stimuli. However, cortisol was unrelated to self-reported affective state. Thus, findings indicate that acute cortisol elevations cause heightened arousal in response to objectively nonarousing stimuli, in the absence of effects on mood.
Zotero Collections:
Many investigators have hypothesized that brain response to cortisol is altered in depression. However, neural activation in response to exogenously manipulated cortisol elevations has not yet been directly examined in depressed humans. Animal research shows that glucocorticoids have robust effects on hippocampal function, and can either enhance or suppress neuroplastic events in the hippocampus depending on a number of factors. We hypothesized that depressed individuals would show 1) altered hippocampal response to exogenous administration of cortisol, and 2) altered effects of cortisol on learning. In a repeated-measures design, 19 unmedicated depressed and 41 healthy individuals completed two fMRI scans. Fifteen mg oral hydrocortisone (i.e., cortisol) or placebo (order randomized and double-blind) was administered 1 h prior to encoding of emotional and neutral words during fMRI scans. Data analysis examined the effects of cortisol administration on 1) brain activation during encoding, and 2) subsequent free recall for words. Cortisol affected subsequent recall performance in depressed but not healthy individuals. We found alterations in hippocampal response to cortisol in depressed women, but not in depressed men (who showed altered response to cortisol in other regions, including subgenual prefrontal cortex). In both depressed men and women, cortisol's effects on hippocampal function were positively correlated with its effects on recall performance assessed days later. Our data provide evidence that in depressed compared to healthy women, cortisol's effects on hippocampal function are altered. Our data also show that in both depressed men and women, cortisol's effects on emotional memory formation and hippocampal function are related.
Zotero Collections:
In a test of the effects of cortisol on emotional memory, 90 men were orally administered placebo or 20 or 40 mg cortisol and presented with emotionally arousing and neutral stimuli. On memory tests administered within 1 hr of stimulus presentation, cortisol elevations caused a reduction in the number of errors committed on free-recall tasks. Two evenings later, when cortisol levels were no longer manipulated, inverted-U quadratic trends were found for recognition memory tasks, reflecting memory facilitation in the 20-mg group for both negative and neutral information. Results suggest that the effects of cortisol on memory do not differ substantially for emotional and neutral information. The study provides evidence of beneficial effects of acute cortisol elevations on explicit memory in humans.
Zotero Collections:
In this study, we tested the validity of 2 popular assumptions about empathy: (a) empathy can be enhanced by oxytocin, a neuropeptide known to be crucial in affiliative behavior, and (b) individual differences in prosocial behavior are positively associated with empathic brain responses. To do so, we measured brain activity in a double-blind placebo-controlled study of 20 male participants either receiving painful stimulation to their own hand (self condition) or observing their female partner receiving painful stimulation to her hand (other condition). Prosocial behavior was measured using a monetary economic interaction game with which participants classified as prosocial (N = 12) or selfish (N = 6), depending on whether they cooperated with another player. Empathy-relevant brain activation (anterior insula) was neither enhanced by oxytocin nor positively associated with prosocial behavior. However, oxytocin reduced amygdala activation when participants received painful stimulation themselves (in the nonsocial condition). Surprisingly, this effect was driven by "selfish" participants. The results suggest that selfish individuals may not be as rational and unemotional as usually suggested, their actions being determined by their feeling anxious rather than by reason.
Zotero Collections:
<p>With each eye fixation, we experience a richly detailed visual world. Yet recent work on visual integration and change direction reveals that we are surprisingly unaware of the details of our environment from one view to the next: we often do not detect large changes to objects and scenes ('change blindness'). Furthermore, without attention, we may not even perceive objects ('inattentional blindness'). Taken together, these findings suggest that we perceive and remember only those objects and details that receive focused attention. In this paper, we briefly review and discuss evidence for these cognitive forms of 'blindness'. We then present a new study that builds on classic studies of divided visual attention to examine inattentional blindness for complex objects and events in dynamic scenes. Our results suggest that the likelihood of noticing an unexpected object depends on the similarity of that object to other objects in the display and on how difficult the priming monitoring task is. Interestingly, spatial proximity of the critical unattended object to attended locations does not appear to affect detection, suggesting that observers attend to objects and events, not spatial positions. We discuss the implications of these results for visual representations and awareness of our visual environment.</p>
Zotero Collections:
Objective To explore participants’ experience in placebo-controlled randomized clinical trials (RCTs) specifically in relationship to their expectations. Background Aspects of being in RCTs, such as informed consent, perception of benefit and understanding of randomization, have been examined. In contrast, little is known concerning the formation of patient expectations before and during trials. Methods Qualitative methods using in-depth interviews with a semi-structured interview guide of nine patients from four different RCTs. Data analysis was conducted using a codebook format arranging participant responses under broad analytical headings. The interviewer used a semi-structured interview guide to direct the conversation from one broad topic to the next within the context of the ongoing conversation. A checklist of topics encouraged participants to describe their experiences in RCTs. Narratives concerning expectation, blinding and placebo were compared to identify common themes. Results Patient anticipatory processes were influenced and modified both before and during the trial from multiple inputs. Such factors as past experiences in RCTs, past experiences of ineffective treatment, stress of being off regular medications, fear of being a ‘placebo responder’, input of non-study doctors or other health professionals, the experience of other participants, measurements of health parameters made during the trial and the presence or absence of side-effects all affected patient expectation. Conclusion Expectations in RCTs are not fixed and instead may be viewed as continuously shaped by multiple inputs that include experience and information received both before and during the trial. Variability in placebo response observed in previous studies may be related to the fluid nature of expectations. Trying to control and equalize expectations in RCTs may be more difficult than previously assumed.
Zotero Collections:
BACKGROUND: Anhedonia, a reduced ability to experience pleasure, is a chief symptom of major depressive disorder and is related to reduced frontostriatal connectivity when attempting to upregulate positive emotion. The present study examined another facet of positive emotion regulation associated with anhedonia-namely, the downregulation of positive affect-and its relation to prefrontal cortex (PFC) activity.
METHODS: Neuroimaging data were collected from 27 individuals meeting criteria for major depressive disorder as they attempted to suppress positive emotion during a positive emotion regulation task. Their PFC activation pattern was compared with the PFC activation pattern exhibited by 19 healthy control subjects during the same task. Anhedonia scores were collected at three time points: at baseline (time 1), 8 weeks after time 1 (i.e., time 2), and 6 months after time 1 (i.e., time 3). Prefrontal cortex activity at time 1 was used to predict change in anhedonia over time. Analyses were conducted utilizing hierarchical linear modeling software.
RESULTS: Depressed individuals who could not inhibit positive emotion-evinced by reduced right ventrolateral prefrontal cortex activity during attempts to dampen their experience of positive emotion in response to positive visual stimuli-exhibited a steeper anhedonia reduction slope between baseline and 8 weeks of treatment with antidepressant medication (p < .05). Control subjects showed a similar trend between baseline and time 3.
CONCLUSIONS: To reduce anhedonia, it may be necessary to teach individuals how to counteract the functioning of an overactive pleasure-dampening prefrontal inhibitory system.
Zotero Collections: