Skip to main content Skip to search
Displaying 1 - 25 of 182

Pages

  • Page
  • of 8
Individuals with asthma have twice the risk of developing mood and anxiety disorders as individuals without asthma and these psychological factors are associated with worse outcomes and greater need for medical intervention. Similarly, asthma symptom onset and exacerbation often occur during times of increased psychological stress. Remission from depression, on the other hand, is associated with improvement in asthma symptoms and decreased usage of asthma medication. Yet research aimed at understanding the biological underpinnings of asthma has focused almost exclusively on the periphery. An extensive literature documents the relationship between emotion and asthma, but little work has explored the function of affective neural circuitry in asthma symptom expression. Therefore, the following review integrates neuroimaging research related to factors that may impact symptom expression in asthma, such as individual differences in sensitivity to visceral signals, the influence of expectation and emotion on symptom perception, and changes related to disease chronicity, such as conditioning and plasticity. The synthesis of these literatures suggests that the insular and anterior cingulate cortices, in addition to other brain regions previously implicated in the regulation of emotion, may be both responsive to asthma-related bodily changes and important in influencing the appearance and persistence of symptom expression in asthma.

Individuals with asthma have twice the risk of developing mood and anxiety disorders as individuals without asthma and these psychological factors are associated with worse outcomes and greater need for medical intervention. Similarly, asthma symptom onset and exacerbation often occur during times of increased psychological stress. Remission from depression, on the other hand, is associated with improvement in asthma symptoms and decreased usage of asthma medication. Yet research aimed at understanding the biological underpinnings of asthma has focused almost exclusively on the periphery. An extensive literature documents the relationship between emotion and asthma, but little work has explored the function of affective neural circuitry in asthma symptom expression. Therefore, the following review integrates neuroimaging research related to factors that may impact symptom expression in asthma, such as individual differences in sensitivity to visceral signals, the influence of expectation and emotion on symptom perception, and changes related to disease chronicity, such as conditioning and plasticity. The synthesis of these literatures suggests that the insular and anterior cingulate cortices, in addition to other brain regions previously implicated in the regulation of emotion, may be both responsive to asthma-related bodily changes and important in influencing the appearance and persistence of symptom expression in asthma.
Zotero Collections:

This past year has seen significant advances in our understanding of the physiology of emotion. Attention continues to focus on the amygdala and its interconnections with prefrontal cortical regions. New evidence underscores the importance of lateralization for emotion. There are also new findings on the physiological predictors of individual differences in emotional behavior and experience, and on the role of autonomic arousal in emotional memory.
Zotero Collections:

<p>Humans often judge others egocentrically, assuming that they feel or think similarly to themselves. Emotional egocentricity bias (EEB) occurs in situations when others feel differently to oneself. Using a novel paradigm, we investigated the neurocognitive mechanisms underlying the developmental capacity to overcome such EEB in children compared with adults. We showed that children display a stronger EEB than adults and that this correlates with reduced activation in right supramarginal gyrus (rSMG) as well as reduced coupling between rSMG and left dorsolateral prefrontal cortex (lDLPFC) in children compared with adults. Crucially, functional recruitment of rSMG was associated with age-related differences in cortical thickness of this region. Although in adults the mere presence of emotional conflict occurs between self and other recruited rSMG, rSMG-lDLPFC coupling was only observed when implementing empathic judgements. Finally, resting state analyses comparing connectivity patterns of rSMG with that of right temporoparietal junction suggested a unique role of rSMG for self-other distinction in the emotional domain for adults as well as for children. Thus, children’s difficulties in overcoming EEB may be due to late maturation of regions distinguishing between conflicting socio-affective information and relaying this information to regions necessary for implementing accurate judgments.</p>
Zotero Collections:

Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36-84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.

Studies on aging and emotion suggest an increase in reported positive affect, a processing bias of positive over negative information, as well as increasingly adaptive regulation in response to negative events with advancing age. These findings imply that older individuals evaluate information differently, resulting in lowered reactivity to, and/or faster recovery from, negative information, while maintaining more positive responding to positive information. We examined this hypothesis in an ongoing study on Midlife in the US (MIDUS II) where emotional reactivity and recovery were assessed in a large number of respondents (N = 159) from a wide age range (36-84 years). We recorded eye-blink startle magnitudes and corrugator activity during and after the presentation of positive, neutral and negative pictures. The most robust age effect was found in response to neutral stimuli, where increasing age is associated with a decreased corrugator and eyeblink startle response to neutral stimuli. These data suggest that an age-related positivity effect does not essentially alter the response to emotion-laden information, but is reflected in a more positive interpretation of affectively ambiguous information. Furthermore, older women showed reduced corrugator recovery from negative pictures relative to the younger women and men, suggesting that an age-related prioritization of well-being is not necessarily reflected in adaptive regulation of negative affect.
Zotero Collections:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease < attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.
Zotero Collections:

Despite growing evidence on the neural bases of emotion regulation, little is known about the mechanisms underlying individual differences in cognitive regulation of negative emotion, and few studies have used objective measures to quantify regulatory success. Using a trait-like psychophysiological measure of emotion regulation, corrugator electromyography, we obtained an objective index of the ability to cognitively reappraise negative emotion in 56 healthy men (Session 1), who returned 1.3 years later to perform the same regulation task using fMRI (Session 2). Results indicated that the corrugator measure of regulatory skill predicted amygdala-prefrontal functional connectivity. Individuals with greater ability to down-regulate negative emotion as indexed by corrugator at Session 1 showed not only greater amygdala attenuation but also greater inverse connectivity between the amygdala and several sectors of the prefrontal cortex while down-regulating negative emotion at Session 2. Our results demonstrate that individual differences in emotion regulation are stable over time and underscore the important role of amygdala-prefrontal coupling for successful regulation of negative emotion.
Zotero Collections:

Although the co-occurrence of negative affect and pain is well recognized, the mechanism underlying their association is unclear. To examine whether a common self-regulatory ability impacts the experience of both emotion and pain, we integrated neuroimaging, behavioral, and physiological measures obtained from three assessments separated by substantial temporal intervals. Our results demonstrated that individual differences in emotion regulation ability, as indexed by an objective measure of emotional state, corrugator electromyography, predicted self-reported success while regulating pain. In both emotion and pain paradigms, the amygdala reflected regulatory success. Notably, we found that greater emotion regulation success was associated with greater change of amygdalar activity following pain regulation. Furthermore, individual differences in degree of amygdalar change following emotion regulation were a strong predictor of pain regulation success, as well as of the degree of amygdalar engagement following pain regulation. These findings suggest that common individual differences in emotion and pain regulatory success are reflected in a neural structure known to contribute to appraisal processes.
Zotero Collections:

BACKGROUND: Autism is a syndrome of unknown cause, marked by abnormal development of social behavior. Attempts to link pathological features of the amygdala, which plays a key role in emotional processing, to autism have shown little consensus. OBJECTIVE: To evaluate amygdala volume in individuals with autism spectrum disorders and its relationship to laboratory measures of social behavior to examine whether variations in amygdala structure relate to symptom severity. DESIGN: We conducted 2 cross-sectional studies of amygdala volume, measured blind to diagnosis on high-resolution, anatomical magnetic resonance images. Participants were 54 males aged 8 to 25 years, including 23 with autism and 5 with Asperger syndrome or pervasive developmental disorder not otherwise specified, recruited and evaluated at an academic center for developmental disabilities and 26 age- and sex-matched community volunteers. The Autism Diagnostic Interview-Revised was used to confirm diagnoses and to validate relationships with laboratory measures of social function. MAIN OUTCOME MEASURES: Amygdala volume, judgment of facial expressions, and eye tracking. RESULTS: In study 1, individuals with autism who had small amygdalae were slowest to distinguish emotional from neutral expressions (P=.02) and showed least fixation of eye regions (P=.04). These same individuals were most socially impaired in early childhood, as reported on the Autism Diagnostic Interview-Revised (P<.04). Study 2 showed smaller amygdalae in individuals with autism than in control subjects (P=.03) and group differences in the relation between amygdala volume and age. Study 2 also replicated findings of more gaze avoidance and childhood impairment in participants with autism with the smallest amygdalae. Across the combined sample, severity of social deficits interacted with age to predict different patterns of amygdala development in autism (P=.047). CONCLUSIONS: These findings best support a model of amygdala hyperactivity that could explain most volumetric findings in autism. Further psychophysiological and histopathological studies are indicated to confirm these findings.
Zotero Collections:

A variety of recent research indicates that when subjects are induced to experience certain negative emotions, there is greater suppression of alpha power in the right than left frontal region, while during the experience of positive emotion, alpha power asymmetry in this region shows the opposite pattern. We have conceptualized this assymetry as reflecting specialization for approach and withdrawal processes in the left and right frontal regions, respectively. In this experiment, reward and punishment contingencies were directly manipulated to produce approach and withdrawal response motional states. In addition, subjects responded to imperative stimuli using either an approach response (finger press) or a withdrawal response (finger lift). EEG was recorded from multiple scalp locations. During the foreperiod prior to the response to the imperative stimuli, the EEG was extracted, Fourier-transformed and power computed in the theta, alpha and beta frequency bands. In addition, the contingent negative variation (CNV) was derived from the identical epoch. Reward trials were associated with greater left frontal alpha power suppression than punishment trials, while during the latter trials, there was greater right-sided frontal alpha power suppression than during reward trials. There was also some evidence to indicate that withdrawal responses were associated with greater right-sided alpha power suppression in the temporo-parietal region compared with approach responses. Power in the theta and beta bands did not systematically vary with condition. The CNV was larger during trials on which subjects responded quickly compared with slow trials, but did not differentiate between reward and punishment contingencies. The findings support the hypothesis that approach-related processes can be differentiated from withdrawal-related processes on the basis of asymmetrical shifts in alpha power in the frontal region. They also indicate that the CNV and spectral power estimates from the identical epochs reflect different neural processes.
Zotero Collections:

This article presents an overview of the author's recent electrophysiological studies of anterior cerebral asymmetries related to emotion and affective style. A theoretical account is provided of the role of the two hemispheres in emotional processing. This account assigns a major role in approach- and withdrawal-related behavior to the left and right frontal and anterior temporal regions of two hemispheres, respectively. Individual differences in approach- and withdrawal-related emotional reactivity and temperament are associated with stable differences in baseline measures of activation asymmetry in these anterior regions. Phasic state changes in emotion result in shifts in anterior activation asymmetry which are superimposed upon these stable baseline differences. Future directions for research in this area are discussed.
Zotero Collections:

Two reports in the last issue of this journal attempted to replicate aspects of our previous studies on anterior electroencephalogram (EEG) asymmetry, affective style, and depression. In this commentary, an overview is provided of our model of anterior asymmetries, affective style, and psychopathology. Emphasis is placed on conceptualizing the prefrontal and anterior temporal activation patterns within a circuit that includes cortical and subcortical structures. The causal status of individual differences in asymmetric activation in the production of affective style and psychopathology is considered. Major emphasis is placed on EEG methods, particularly the need for multiple assessments to obtain estimates of asymmetric activation that better reflect an individual's true score. Issues specific to each of the two articles are also considered. Each of the articles has more consistency with our previously published data than the authors themselves suggest. Recommendations are made for future research to resolve some of the outstanding issues.
Zotero Collections:

On the basis of a review of the extant literature describing emotion-cognition interactions, the authors propose 4 methodological desiderata for studying how task-irrelevant affect modulates cognition and present data from an experiment satisfying them. Consistent with accounts of the hemispheric asymmetries characterizing withdrawal-related negative affect and visuospatial working memory (WM) in prefrontal and parietal cortices, threat-induced anxiety selectively disrupted accuracy of spatial but not verbal WM performance. Furthermore, individual differences in physiological measures of anxiety statistically mediated the degree of disruption. A second experiment revealed that individuals characterized by high levels of behavioral inhibition exhibited more intense anxiety and relatively worse spatial WM performance in the absence of threat, solidifying the authors' inference that anxiety causally mediates disruption. These observations suggest a revision of extant models of how anxiety sculpts cognition and underscore the utility of the desiderata.
Zotero Collections:

In this experiment, we combined the measurement of observable facial behavior with simultaneous measures of brain electrical activity to assess patterns of hemispheric activation in different regions during the experience of happiness and disgust. Disgust was found to be associated with right-sided activation in the frontal and anterior temporal regions compared with the happy condition. Happiness was accompanied by left-sided activation in the anterior temporal region compared with disgust. No differences in asymmetry were found between emotions in the central and parietal regions. When data aggregated across positive films were compared to aggregate negative film data, no reliable differences in brain activity were found. These findings illustrate the utility of using facial behavior to verify the presence of emotion, are consistent with the notion of emotion-specific physiological patterning, and underscore the importance of anterior cerebral asymmetries for emotions associated with approach and withdrawal.
Zotero Collections:

Meditation can be conceptualized as a family of complex emotional and attentional regulatory training regimes developed for various ends, including the cultivation of well-being and emotional balance. Among these various practices, there are two styles that are commonly studied. One style, focused attention meditation, entails the voluntary focusing of attention on a chosen object. The other style, open monitoring meditation, involves nonreactive monitoring of the content of experience from moment to moment. The potential regulatory functions of these practices on attention and emotion processes could have a long-term impact on the brain and behavior.

Background Early life stress (ELS) can compromise development, with higher amounts of adversity linked to behavioral problems. To understand this linkage, a growing body of research has examined two brain regions involved with socioemotional functioning—amygdala and hippocampus. Yet empirical studies have reported increases, decreases, and no differences within human and nonhuman animal samples exposed to different forms of ELS. This divergence in findings may stem from methodological factors, nonlinear effects of ELS, or both. Methods We completed rigorous hand-tracing of the amygdala and hippocampus in three samples of children who experienced different forms of ELS (i.e., physical abuse, early neglect, or low socioeconomic status). Interviews were also conducted with children and their parents or guardians to collect data about cumulative life stress. The same data were also collected in a fourth sample of comparison children who had not experienced any of these forms of ELS. Results Smaller amygdala volumes were found for children exposed to these different forms of ELS. Smaller hippocampal volumes were also noted for children who were physically abused or from low socioeconomic status households. Smaller amygdala and hippocampal volumes were also associated with greater cumulative stress exposure and behavioral problems. Hippocampal volumes partially mediated the relationship between ELS and greater behavioral problems. Conclusions This study suggests ELS may shape the development of brain areas involved with emotion processing and regulation in similar ways. Differences in the amygdala and hippocampus may be a shared diathesis for later negative outcomes related to ELS.
Zotero Collections:

<p>Mindfulness is an attribute of consciousness long believed to promote well-being. This research provides a theoretical and empirical examination of the role of mindfulness in psychological well-being. The development and psychometric properties of the dispositional Mindful Attention Awareness Scale (MAAS) are described. Correlational, quasi-experimental, and laboratory studies then show that the MAAS measures a unique quality of consciousness that is related to a variety of well-being constructs, that differentiates mindfulness practitioners from others, and that is associated with enhanced self-awareness. An experience-sampling study shows that both dispositional and state mindfulness predict self-regulated behavior and positive emotional states. Finally, a clinical intervention study with cancer patients demonstrates that increases in mindfulness over time relate to declines in mood disturbance and stress.</p>

In keeping with cognitive appraisal models of emotion, it was hypothesized that sadness and anger would exert different influences on causal judgments. Two experiments provided initial support for this hypothesis. Sad Ss perceived situationally caused events as more likely (Experiment 1) and situational forces more responsible for an ambiguous event (Experiment 2) than angry Ss, who, in contrast, perceived events caused by humans as more likely and other people as more responsible. Experiments 3, 4, and 5 showed that the experience of these emotions, rather than their cognitive constituents, mediates these effects. The nonemotional exposure to situational or human agency information did not influence causal judgments (Experiment 3), whereas the induction of sadness and anger without explicit agency information did (Experiments 4 and 5). Discussion is focused on the influence of emotion on social judgment.
Zotero Collections:

The brain and the cardiovascular system influence each other during the processing of emotion. The study of the interactions of these systems during emotion regulation has been limited in human functional neuroimaging, despite its potential importance for physical health. We have previously reported that mental expertise in cultivation of compassion alters the activation of circuits linked with empathy and theory of mind in response to emotional stimuli. Guided by the finding that heart rate increases more during blocks of compassion meditation than neutral states, especially for experts, we examined the interaction between state (compassion vs. neutral) and group (novice, expert) on the relation between heart rate and BOLD signal during presentation of emotional sounds presented during each state. Our findings revealed that BOLD signal in the right middle insula showed a significant association with heart rate (HR) across state and group. This association was stronger in the left middle/posterior insula when experts were compared to novices. The positive coupling of HR and BOLD was higher within the compassion state than within the neutral state in the dorsal anterior cingulate cortex for both groups, underlining the role of this region in the modulation of bodily arousal states. This state effect was stronger for experts than novices in somatosensory cortices and the right inferior parietal lobule (group by state interaction). These data confirm that compassion enhances the emotional and somatosensory brain representations of others' emotions, and that this effect is modulated by expertise. Future studies are needed to further investigate the impact of compassion training on these circuits.
Zotero Collections:

Previous research indicates that lower-class individuals experience elevated negative emotions as compared with their upper-class counterparts. We examine how the environments of lower-class individuals can also promote greater compassionate responding-that is, concern for the suffering or well-being of others. In the present research, we investigate class-based differences in dispositional compassion and its activation in situations wherein others are suffering. Across studies, relative to their upper-class counterparts, lower-class individuals reported elevated dispositional compassion (Study 1), as well as greater self-reported compassion during a compassion-inducing video (Study 2) and for another person during a social interaction (Study 3). Lower-class individuals also exhibited heart rate deceleration-a physiological response associated with orienting to the social environment and engaging with others-during the compassion-inducing video (Study 2). We discuss a potential mechanism of class-based influences on compassion, whereby lower-class individuals' are more attuned to others' distress, relative to their upper-class counterparts.
Zotero Collections:

Recently, there is a growing interest in meditation as an attentional and emotional regulatory strategy. To examine whether meditative practice is associated with successful emotion regulation, we examined the neurophysiological correlates of cognitive reappraisal in practitioners of a yogic meditative technique and controls. Participants were presented aversive pictures and were asked to cognitively change their appraisal of the affective meaning of the pictures by coming up with an alternative more positive interpretation of each picture. We found reduced magnitude of Event-Related Potentials (P300 and early time intervals of the late positive potential, LPP) following cognitive reappraisal of aversive pictures in both groups. However, in the yogic group, reduced magnitude was sustained during the later intervals of the LPP, while it subsided in the control group. Moreover, reduced amplitude of the late LPP correlated positively with experience of the technique. Results suggest a relation between yogic meditative practice and sustained attenuation of emotional response following emotion regulation. Increased positive affect and familiarity with cognitive emotion regulation in the yogic group may explain this effect. Whether this is a direct causal effect of the practice or can be attributed to characteristics of the participants that preexisted the training needs further examination in a randomized longitudinal study. (PsycINFO Database Record (c) 2012 APA, all rights reserved)

Pages

  • Page
  • of 8