Skip to main content Skip to search
Displaying 26 - 46 of 46

Pages

  • Page
  • of 2
Dynamic microwave-assisted extraction (DMAE) technique was employed for the extraction of polysaccharides from Lycium ruthenicum (LRP). The extracting parameters were optimized by using three-variable-three-level Box-Behnken design and response surface methodology (RSM) based on the single-factor experiments. RSM analysis indicated good correspondence between experimental and predicted values. The optimum extraction parameters for the yield of polysaccharide were ratio of water to raw material 31.5 mL/g, extracting time 25.8 min and microwave power 544.0 W. Polysaccharide was analyzed by chemical methods and Fourier-transform infrared (FT-IR). The antioxidant activities of LRP were investigated including scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide and free radicals of superoxide anion in vitro. The results of antioxidant activity exhibited LRP had the potential to be explored as novel natural antioxidant for using in functional foods or medicine.

A phytochemical investigation of <b>Lagotis brevituba</b> led to the isolation of 16 compounds, including five phenylpropanoids (<b>1</b>-<b>5</b>), eight flavonoids (<b>6</b>-<b>13</b>), one iridoid (<b>14</b>), one phenolic compound (<b>15</b>) and one triterpene (<b>16</b>). The structures of these compounds were identified by spectroscopic methods and a comparison of their data with those reported in the literature. This is the first report of compounds <b>1</b>, <b>2</b>, <b>7</b>-<b>13</b> and <b>15</b> from the genus <b>Lagotis</b>. The chemotaxonomic significance of these compounds has also been summarized.<br>• A phytochemical investigation of <b>Lagotis brevituba</b> led to the isolation of 16 compounds, including five phenylpropanoids (<b>1</b>-<b>5</b>), eight flavonoids (<b>6</b>-<b>13</b>), one iridoid (<b>14</b>), one phenolic (<b>15</b>) and one triterpene (<b>16</b>). • This is the first report of compounds <b>1</b>, <b>2</b>, <b>7</b>-<b>13</b> and <b>15</b> from the genus <b>Lagotis.</b>

Traditional Tibetan medicine (TTM) has been valuable for the identification of new therapeutic leads. Nevertheless, reports about the chemical constituents of TTM are meager owing to the lack of suitable purification techniques. In this study, an off-line two-dimensional reversed-phase/hydrophilic interaction liquid chromatography (2D RP/HILIC) technique guided by on-line HPLC-DPPH has been established for the isolation of pure antioxidants from the extract of Dracocephalum heterophyllum . According to the chromatographic recognition outcome of the HPLC-DPPH system, the first-dimensional (1D) separation on the Megress C18 preparative column yielded 6 antioxidative fractions (61.4% recovery) from the ethyl acetate fraction (6.1 g). In the second-dimensional (2D) separation, a HILIC XAmide preparative column was employed. In total, 8 antioxidants were isolated from D. heterophyllum with a purity of >95%, which indicated the efficiency of the developed method to prepare antioxidative compounds with high purity from plant extracts. In addition, this method was highly efficient for the preparation of structural analogues of the antioxidative polyphenols and could be applied for the purification of structural analogues from other resources. [ABSTRACT FROM AUTHOR]

An offline preparative two-dimensional reversed-phase liquid chromatography/hydrophilic interaction liquid chromatography coupled with hydrophilic interaction solid-phase extraction method was developed for the preparative isolation of flavonoid glycosides from a crude sample of Sphaerophysa salsula. First, the non-flavonoids were removed using an XAmide solid-phase extraction cartridge. Based on the separation results of three different chromatographic stationary phases, the first-dimensional preparation was performed on an XAqua C18 prep column, and 15 fractions were obtained from the 5.2 g target sample. Then, three representative fractions were selected for additional purification on an XAmide preparative column to further isolate the flavonoid glycosides. In all, eight flavonoid glycosides were isolated in purities over 97%. The results demonstrated that the two-dimensional liquid chromatography method used in this study was effective for the preparative separation of flavonoid glycosides from Sphaerophysa salsula. Additionally, this method showed great potential for the separation of flavonoid glycosides from other plant materials.

In this work, a hyphenated technique of dual ultrasound-assisted dispersive liquid-liquid microextraction combined with microwave-assisted derivatization followed by ultra high performance liquid chromatography tandem mass spectrometry has been developed for the determination of phytosterols in functional foods and medicinal herbs. Multiple reaction monitoring mode was used for the tandem mass spectrometry detection. A mass spectrometry sensitive reagent, 4'-carboxy-substituted rosamine, has been used as the derivatization reagent for five phytosterols, and internal standard diosgenin was used for the first time. Parameters for the dual microextraction, microwave-assisted derivatization, and ultra high performance liquid chromatography tandem mass spectrometry were all optimized in detail. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect, extremely low limits of detection (0.005-0.015 ng/mL) and limits of quantification (0.030-0.10 ng/mL) were achieved. The proposed method was compared with previously reported methods. It showed better sensitivity, selectivity, and accuracy. The matrix effect was also significantly reduced. The proposed method was successfully applied to the determination of five phytosterols in vegetable oil (sunflower oil, olive oil, corn oil, peanut oil), milk and orange juice (soymilk, peanut milk, orange juice), and medicinal herbs (Ginseng, Ganoderma lucidum, Cordyceps, Polygonum multiflorum) for the quality control of functional foods and medicinal herbs.

Sub-acute and chronic toxic effects of total steroidal saponins (TSSN) extracts from Dioscorea zingiberensis C.H. Wright on various internal organs and biochemical indicators have never been studied before and this study is the first of its kind to demonstrate sub-acute and chronic toxicities of TSSN on dogs. Administration of TSSN extracts at doses up to 3000 mg/Kg daily for 14 days, no biochemical and organ changes were observed on the experimental groups of dogs. Further, chronic toxicity study through oral administration of TSSN extracts at the gradual doses of 50, 250 and 500 mg/Kg for 90 days followed by a 2-week recovery assay revealed absence of significant architectural and morphological changes in internal organs which were confirmed through histopathological examination and merely no significant alteration in the biochemical indicators including hematologic and urine analysis and electrocardiogram compared to the control dogs. This toxicological evaluation came across with the finding that the herbal preparation can be considered as nontoxic and animals could tolerate the extracts at doses up to 500 mg/Kg with LD50 greater than 3000 mg/Kg. It may serve as a preliminary scientific evidence for further therapeutic investigations.

Sub-acute and chronic toxic effects of total steroidal saponins (TSSN) extracts from Dioscorea zingiberensis C.H. Wright on various internal organs and biochemical indicators have never been studied before and this study is the first of its kind to demonstrate sub-acute and chronic toxicities of TSSN on dogs. Administration of TSSN extracts at doses up to 3000 mg/Kg daily for 14 days, no biochemical and organ changes were observed on the experimental groups of dogs. Further, chronic toxicity study through oral administration of TSSN extracts at the gradual doses of 50, 250 and 500 mg/Kg for 90 days followed by a 2-week recovery assay revealed absence of significant architectural and morphological changes in internal organs which were confirmed through histopathological examination and merely no significant alteration in the biochemical indicators including hematologic and urine analysis and electrocardiogram compared to the control dogs. This toxicological evaluation came across with the finding that the herbal preparation can be considered as nontoxic and animals could tolerate the extracts at doses up to 500 mg/Kg with LD50 greater than 3000 mg/Kg. It may serve as a preliminary scientific evidence for further therapeutic investigations.

Highland barley is one of the most important industrial crops in Tibetan plateau. Previous research indicated that highland barley has many medical functions. In this work, the antibacterial abilities of highland barley were investigated. The protein solutions hydrolyzed by trypsin for 4 h exhibited the highest antibacterial activity. An antibacterial peptide, barleycin, was screened and purified by magnetic liposome extraction combining with the protein profiles of reversed-phase high-performance liquid chromatography (RP-HPLC). Structure, characterization, and safety evaluation of barleycin were further investigated. Amino acids sequence was determined as Lys-Ile-Ile-Ile-Pro-Pro-Leu-Phe-His by N-sequencing. Circular dichroism spectra indicated the a-helix conformation of barleycin. The activity spectrum included <i>Bacillus subtilis, Staphylcoccus aureus, Listeria innocua and Escherichia coli</i> and the MICs were from 4 to 16 μg/mL. Safety evaluations with cytotoxicity and hemolytic suggested this antibacterial peptide could be considered as safe at MICs. Finally, mode of action of barleycin on sensitive cells was primarily studied. The results suggested the damage of cell membrane.

Simultaneous detection of oleanolic acid and ursolic acid in rat blood by in vivo microdialysis can provide important pharmacokinetics information. Microwave-assisted derivatization coupled with magnetic dispersive solid phase extraction was established for the determination of oleanolic acid and ursolic acid by liquid chromatography tandem mass spectrometry. 2'-Carbonyl-piperazine rhodamine B was first designed and synthesized as the derivatization reagent, which was easily adsorbed onto the surface of Fe3O4/graphene oxide. Simultaneous derivatization and extraction of oleanolic acid and ursolic acid were performed on Fe3O4/graphene oxide. The permanent positive charge of the derivatization reagent significantly improved the ionization efficiencies. The limits of detection were 0.025 and 0.020 ng/mL for oleanolic acid and ursolic acid, respectively. The validated method was shown to be promising for sensitive, accurate, and simultaneous determination of oleanolic acid and ursolic acid. It was used for their pharmacokinetics study in rat blood after oral administration of Arctiumlappa L. root extract.

An orthogonally (80.3%) preparative two-dimensional hydrophilic interaction chromatography/reversed-phase liquid chromatography method has been established for the isolation and purification of flavonoids from Saxifraga tangutica. Initially, flavonoids were enriched by means of a middle-pressure chromatographic tower (containing middle chromatogram isolated gel). In the first dimension, a XION preparative column was used to separate the flavonoid fractions under the guidance of characteristic ultraviolet absorption spectra of flavonoids and nine flavonoid fractions were obtained. Then, the coeluted flavonoid fractions were selected for further purification via reversed-phase liquid chromatography with the parent ion peak of quercetin (303), kaempferol (287), or isorhamnetin (317). Several flavonoids could be separated from each hydrophilic interaction chromatography fraction; furthermore, flavonoids with poor resolution in one-dimensional liquid chromatography were isolated in two-dimensional liquid chromatography due to the orthogonality. In addition, this technique was valuable for trace flavonoids, which were concentrated in the first stage and separated in the second stage. In total, 18 flavonoids with either quercetin, kaempferol, or isorhamnetin parent nuclei were targetedly obtained, and 15 flavonoids were obtained for the first time from S. tangutica. These results established that the off-line two-dimensional hydrophilic interaction chromatography/reversed-phase liquid chromatography technique was efficient for the isolation of flavonoids from Saxifraga tangutica.

An orthogonally (80.3%) preparative two-dimensional hydrophilic interaction chromatography/reversed-phase liquid chromatography method has been established for the isolation and purification of flavonoids from Saxifraga tangutica. Initially, flavonoids were enriched by means of a middle-pressure chromatographic tower (containing middle chromatogram isolated gel). In the first dimension, a XION preparative column was used to separate the flavonoid fractions under the guidance of characteristic ultraviolet absorption spectra of flavonoids and nine flavonoid fractions were obtained. Then, the coeluted flavonoid fractions were selected for further purification via reversed-phase liquid chromatography with the parent ion peak of quercetin (303), kaempferol (287), or isorhamnetin (317). Several flavonoids could be separated from each hydrophilic interaction chromatography fraction; furthermore, flavonoids with poor resolution in one-dimensional liquid chromatography were isolated in two-dimensional liquid chromatography due to the orthogonality. In addition, this technique was valuable for trace flavonoids, which were concentrated in the first stage and separated in the second stage. In total, 18 flavonoids with either quercetin, kaempferol, or isorhamnetin parent nuclei were targetedly obtained, and 15 flavonoids were obtained for the first time from S. tangutica. These results established that the off-line two-dimensional hydrophilic interaction chromatography/reversed-phase liquid chromatography technique was efficient for the isolation of flavonoids from Saxifraga tangutica.

Traditional Chinese medicine is important for discovery of drug precursors. However, information about trace chemical composition of them is very limited due to the lack of appropriate enrichment and chromatographic purification methods In our work, A. kansuensis was taken as an example, a novel two-dimensional reversed-phase/hydrophilic interaction liquid chromatography coupled with UniElut C18AEX solid-phase extraction re-enrichment method based on anti-inflammatory bioactivity-guided assay was developed for gathering and purifying trace β-carboline alkaloids with high purity from the ethyl acetate extract of A. kansuensis. Extraction with ethyl acetate as the first enrichment method, then, a UniElut C18AEX column was employed to re-enrich trace fraction which was hardly detected by diode array detector during high performance liquid chromatography analysis, eighteen grams of UniElut C18AEX was used as sorbent material to pack a 60mL pipette tip for the extraction of β-carboline alkaloids from 100mL of ethyl acetate sample. The whole extraction process was finished in 10min, and the volume of eluent used was only 120mL. The enriching fraction (100mg) was used for the following two-dimensional purification. First-dimensional preparation was carried on a RP-Megress-C18 prep column, and four anti-inflammatory fractions were obtained from the 100mg re-enriching sample with a recovery of 66.9%. A HILIC-XAmide prep column was selected for the second dimensional preparation. Finally, two pair of analogue β-carboline alkaloids and one other β-carboline alkaloid were purified from A. kansuensis. The purity of the isolated compounds was ≫>98%, which indicated that the method was efficient to re-enrich and manufacture single trace β-carboline alkaloids with high purity from A. kansuensis. Additionally, this method showed great potential to serve as a good example for the purification and enrichment of analogue structure anti-inflammation carboline alkaloids from other plant materials.

Traditional Tibetan medicine is important for discovery of drug precursors. However, information about the chemical composition of traditional Tibetan medicine is very limited due to the lack of appropriate chromatographic purification methods. In the present work, A. kansuensis was taken as an example and a novel two-dimensional reversed-phase/hydrophilic interaction liquid chromatography(HILIC) method based on on-line HPLC-DPPH bioactivity-guided assay was developed for the purification of analogue antioxidant compounds with high purity from the extract of A. kansuensis. Based on the separation results of many different chromatographic stationary phases, the first-dimensional (1D) preparation was carried on a RP-C18HCE prep column, and 2 antioxidant fractions were obtained from the 800mg crude sample with a recovery of 56.7%. A HILIC-XAmide prep column was selected for the second-dimensional (2D) preparation. Finally, a novel antioxidant β-carboline Alkaloids (Glusodichotomine AK) and 4 known compounds (Tricin, Homoeriodictyol, Luteolin, Glucodichotomine B) were purified from A. kansuensis. The purity of the compounds isolated from the crude extract was >98%, which indicated that the method built in this work was efficient to manufacture single analogue antioxidant compounds of high purity from the extract of A. kansuensis. Additionally, this method showed great potential in the preparation of analogue structure antioxidant compounds and can serve as a good example for the purification of analogue structure antioxidant carboline alkaloids and flavonoids from other plant materials.

Traditional Tibetan medicine is important for discovery of drug precursors. However, knowledge of the chemical composition of traditional Tibetan medicines is very limited due to the lack of appropriate chromatographic purification methods. In the present work, Salvia prattii was taken as an example, and an off-line hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography preparative method was developed for the purification of phenylpropanoids with high purity from a crude sample of Salvia prattii. Based on the separation results of four different chromatographic stationary phases, the first-dimensional preparation was performed on an XAmide preparative column with the crude sample concentration of 62.0 mg/mL, and five main fractions were obtained from the 12.4 g crude sample with a recovery of 54.8%. An XCharge C18 preparative column was applied in the second-dimensional preparation to further isolate the phenylpropanoids from the redissolved first-dimensional fractions with concentration of approximately 50.0 mg/mL. The purities of the phenylpropanoids isolated from the crude sample of Salvia prattii were higher than 98%, indicating that the method was efficient for the purification of phenylpropanoids with high purity from Salvia prattii. Additionally, this method showed great potential in the preparation of phenylpropanoids and can serve as a good example for the purification of phenylpropanoids from other plant materials.

<br>Display Omitted<br>• Two new stilbenoid derivatives were isolated from <b>Sphaerophysa salsula</b>. • One compound were isolated for the first time from this species. • Eight known compounds were isolated from the plant. • These compounds enriched the structural types of natural products from <b>Sphaerophysa salsula</b>.<br>Two new compounds, gnetuhainins Fa (<b>1</b>) and cassigarols Ea (<b>2</b>), were isolated from the whole herb of <b>Sphaerophysa salsula</b> along with eight known compounds (<b>3</b>-<b>10</b>). The compounds (<b>4</b>) were isolated for the first time from this species. Their structures were elucidated by ESI-MS, UV, IR, 1D NMR and 2D NMR data.

OBJECTIVE: To evaluate the influence of the Tibetan medicine RuPeng15 powder (RPP15) on uric acid levels, and explore its possible mechanisms of action in hyperuricemic animal models.METHODS: Hyperuricemic mice were generated by orally administering yeast extract paste twice daily (30 g/kg) for 8 days, to mimic human hyperuricemia induced by high-protein diets. Hyperuricemic rats were generated by intraperitoneal injection of 250 mg/kg potassium oxonate to each animal 1 h before the last oral administration of test compounds, which raised the serum uric acid level by inhibiting the decomposition of uric acid. Levels of uric acid and creatinine in serum and urine were detected by the phosphotungstic acid and picric acid methods respectively, and the activity of xanthine oxidase (XOD) was assayed using a commercial test kit. RESULTS: RPP15 (0.4, 0.8, 1.2 g/kg) significantly decreased the level of serum uric acid in healthy rats (P < 0.05). Furthermore, hyperuricemic rats treated with RPP15 (0.4, 0.8, 1.2 g/kg) had lower serum uric acid levels (P < 0.05), accompanied by lower urine uric acid (P < 0.05). For the hyperuricemic mice, the levels of uric acid in the serum decreased significantly (P < 0.05) and the activity of XOD in the liver was restored to normal levels after treatment with RPP15 (P < 0.05). CONCLUSION: RPP15 (0.4, 0.8, 1.2 g/kg) demonstrated an anti-hyperuricemic effect on both healthy and hyperuricemic animals, and the mechanism is most likely associated with inhibiting the activity of XOD.

OBJECTIVE: To evaluate the influence of the Tibetan medicine RuPeng15 powder (RPP15) on uric acid levels, and explore its possible mechanisms of action in hyperuricemic animal models. METHODS: Hyperuricemic mice were generated by orally administering yeast extract paste twice daily (30 g/kg) for 8 days, to mimic human hyperuricemia induced by high-protein diets. Hyperuricemic rats were generated by intraperitoneal injection of 250 mg/kg potassium oxonate to each animal 1 h before the last oral administration of test compounds, which raised the serum uric acid level by inhibiting the decomposition of uric acid. Levels of uric acid and creatinine in serum and urine were detected by the phosphotungstic acid and picric acid methods respectively, and the activity of xanthine oxidase (XOD) was assayed using a commercial test kit. RESULTS: RPP15 (0.4, 0.8, 1.2 g/kg) significantly decreased the level of serum uric acid in healthy rats (P < 0.05). Furthermore, hyperuricemic rats treated with RPP15 (0.4, 0.8, 1.2 g/kg) had lower serum uric acid levels (P < 0.05), accompanied by lower urine uric acid (P < 0.05). For the hyperuricemic mice, the levels of uric acid in the serum decreased significantly (P < 0.05) and the activity of XOD in the liver was restored to normal levels after treatment with RPP15 (P < 0.05). CONCLUSION: RPP15 (0.4, 0.8, 1.2 g/kg) demonstrated an anti-hyperuricemic effect on both healthy and hyperuricemic animals, and the mechanism is most likely associated with inhibiting the activity of XOD.

Pages

  • Page
  • of 2