Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name "Zangyinchen" for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive (1)H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative (1)H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that (1)H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen.
Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name 'Zangyinchen' for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive H-1 NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative H-1 NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that H-1 NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen. (C) 2014 Elsevier B.V. All rights reserved.
<br>• A 1H NMR-based method is first developed to differentiate two <b>Swertia</b> species. • The two <b>Swertia</b> species exhibit significant differences in their metabolic profiling. • Nine metabolic markers responsible for the differences are screened out. • A qHNMR method is used for quantitative analysis of the discriminating metabolites. • The proposed 1H NMR-based metabolomics method is rapid, reliable and effective.<br><b>Swertia mussotii</b> Franch. and <b>Swertia chirayita</b> Buch.-Ham. have been commonly used under the same name “Zangyinchen” for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive 1H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative 1H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that <b>S. mussotii</b> had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas <b>S. chirayita</b> exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that 1H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two <b>Swertia</b> species, and can be used to verify the genuine origin of Zangyinchen.
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2'-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2'-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
We previously found that Ratanasampil (RNSP), a traditional Tibetan medicine, improves the cognitive function of mild-to-moderate AD patients living at high altitude, as well as learning and memory in an AD mouse model (Tg2576); however, mechanism underlying the effects of RNSP is unknown. In the present study, we investigated the effects and molecular mechanisms of RNSP on oxidative stress-induced neuronal toxicity using human neuroblastoma SH-SY5Y cells. Pretreatment with RNSP significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity of SH-SY5Y cells in a dose-dependent manner (up to 60 μg/mL). Furthermore, RNSP significantly reduced the H2O2-induced upregulation of 8-oxo-2′-deoxyguanosine (8-oxo-dG, the oxidative DNA damage marker) but significantly reversed the expression of repressor element-1 silencing transcription factor (REST) from H2O2 associated (100 μM) downregulation. Moreover, RNSP significantly attenuated the H2O2-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase 1/2 (ERK 1/2) in SH-SY5Y cells. These observations strongly suggest that RNSP may protect the oxidative stress-induced neuronal damage that occurs through the properties of various antioxidants and inhibit the activation of MAPKs. We thus provide the principle molecular mechanisms of the effects of RNSP and indicate its role in the prevention and clinical management of AD.
OBJECTIVE: To explore the protective effects of Tibetan medicine Zuo-Mu-A Decoction (, ZMAD) on the blood parameters and myocardium of high altitude polycythemia (HAPC) model rats.METHODS: Forty male Wistar rats were randomly divided into 4 groups by a random number table, including the normal, model, Rhodiola rosea L. (RRL) and ZMAD groups (10 in each group). Every group was raised in Lhasa to create a HAPC model except the normal group. After modeling, rats in the RRL and the ZMAD groups were administered intragastrically with RRL (20 mL/kg) and ZMAD (7.5 mL/kg) once a day for 2 months, respectively; for the normal and the model groups, 5 mL of distilled water was administered intragastrically instead of decoction. Then routine blood and hematologic rheology parameters were taken, levels of erythropoietin and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were tested, and ultrastructural change in the left ventricular myocardium was observed using transmission electron microscopy.
RESULTS: Compared with the model group, ZMAD significantly reduced the red blood cell count, hemoglobin levels, whole blood viscosity at low/middle shear rates, plasma viscosity, erythrocyte electrophoretic time, erythropoietin and 8-OHdG levels, and also increased the erythrocyte deformation index (P<0.05). There was no difference in all results between the RRL and the ZMAD groups. The cardiac muscle fibers were well-protected, mitochondrial matrix swelled mildly and ultrastructure changes were less prominent in the ZMAD group compared with the model group.
CONCLUSION: ZMAD has significant protective effects on the blood parameters against HAPC, and also has the beneficial effect in protecting against myocardial injury.
To explore the protective effects of Tibetan medicine Zuo-Mu-A Decoction (佐木阿汤, ZMAD) on the blood parameters and myocardium of high altitude polycythemia (HAPC) model rats.<br>Forty male Wistar rats were randomly divided into 4 groups by a random number table, including the normal, model, <i>Rhodiola rosea</i> L. (RRL) and ZMAD groups (10 in each group). Every group was raised in Lhasa to create a HAPC model except the normal group. After modeling, rats in the RRL and the ZMAD groups were administered intragastrically with RRL (20 mL/kg) and ZMAD (7.5 mL/kg) once a day for 2 months, respectively; for the normal and the model groups, 5 mL of distilled water was administered intragastrically instead of decoction. Then routine blood and hematologic rheology parameters were taken, levels of erythropoietin and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were tested, and ultrastructural change in the left ventricular myocardium was observed using transmission electron microscopy.<br>Compared with the model group, ZMAD significantly reduced the red blood cell count, hemoglobin levels, whole blood viscosity at low/middle shear rates, plasma viscosity, erythrocyte electrophoretic time, erythropoietin and 8-OHdG levels, and also increased the erythrocyte deformation index (<i>P</i><0.05). There was no difference in all results between the RRL and the ZMAD groups. The cardiac muscle fibers were well-protected, mitochondrial matrix swelled mildly and ultrastructure changes were less prominent in the ZMAD group compared with the model group.<br>ZMAD has significant protective effects on the blood parameters against HAPC, and also has the beneficial effect in protecting against myocardial injury.
• Simultaneously identified and quantified 18 phenolic compounds from LR fruit by UPLC-Q-Orbitrap MS. • Catechin, naringenin and 9 phenolic acids are the first time to conduct qualitative and quantitative analysis in LR. • Total phenolics content and total anthocyanin content were determined. • The antioxidant activities in vitro of the LR were also evaluated.<br><b>Lycium ruthenicum</b> Murray (LR) is a functional food, and it has long been used in traditional folk medicine. However, detailed qualitative and quantitative analyses related to its phenolic compounds remains scarce. This work reports, for the first time, the establishment of a rapid method for simultaneous identification and quantification of 25 phenolic compounds by UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). This method was validated by LODs, LOQs, precision, repeatability, stability, mean recovery, recovery range and RSD. The confirmed method was applied to the analysis of phenolic compounds in LR. Finally, 18 phenolic compounds in LR were qualitatively and quantitatively analyzed. Among them, 11 constituents were detected for the first time, which included two flavonoids (catechin and naringenin) and seven phenolic acids (gallic acid, vanillic acid, 2,4-dihydroxybenzoic acid, veratronic acid, benzoic acid, ellagic acid and salicylic acid). Moreover, Phloretin and protocatechuate, belonging to the dihydrochalcone flavonoid and protocatechuic acid respectively, were also identified and quantified. The total phenolics content (20.17 ± 2.82 mg/g) and the total anthocyanin content (147.43 ± 1.81 mg/g) were determined. In addition, the antioxidant activities of the LR extract were evaluated through 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP) and total antioxidant activity (T-AOC) assays.
Lycium ruthenicum Murray (LR) is a functional food, and it has long been used in traditional folk medicine. However, detailed qualitative and quantitative analyses related to its phenolic compounds remains scarce. This work reports, for the first time, the establishment of a rapid method for simultaneous identification and quantification of 25 phenolic compounds by UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). This method was validated by LODs, LOQs, precision, repeatability, stability, mean recovery, recovery range and RSD. The confirmed method was applied to the analysis of phenolic compounds in LR. Finally, 18 phenolic compounds in LR were qualitatively and quantitatively analyzed. Among them, 11 constituents were detected for the first time, which included two flavonoids (catechin and naringenin) and seven phenolic acids (gallic acid, vanillic acid, 2,4-dihydroxybenzoic acid, veratronic acid, benzoic acid, ellagic acid and salicylic acid). Moreover, Phloretin and protocatechuate, belonging to the dihydrochalcone flavonoid and protocatechuic acid respectively, were also identified and quantified. The total phenolics content (20.17 ± 2.82 mg/g) and the total anthocyanin content (147.43 ± 1.81 mg/g) were determined. In addition, the antioxidant activities of the LR extract were evaluated through 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP) and total antioxidant activity (T-AOC) assays.
ETHNOPHARMACOLOGICAL RELEVANCE: Rhodiola crenulata, a traditional Tibetan medicine, has shown promise in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, the underlying mechanisms remain unclear. This study investigated the protective effects of R. crenulata aqueous extract (RCAE) on HH-induced brain injury in rats.MATERIALS AND METHODS: An animal model of high-altitude hypoxic brain injury was established in SD rats using an animal decompression chamber for 24 h. Serum and hippocampus levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were then determined using commercial biochemical kits. Neuron morphology and vitality were also evaluated using H&E and Nissl staining, and TUNEL staining was used to examine apoptosis. Gene and protein expression of HIF-1α, microRNA 210, ISCU1/2, COX10, Apaf-1, cleaved Caspase-3, Caspase-3, Bax, Bcl-2, and Cyto-c were determined by western blot, immunohistochemical and qRT-PCR analysis.
RESULTS: RCAE administration attenuated HH-induced brain injury as evidenced by decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, improvements in hippocampus histopathological changes, increased cell vitality and ATP level, and reduced apoptotic cell numbers. RCAE treatment also enhanced HIF-1α, ISCU1/2, COX10, and Bcl-2 protein expression, while dramatically inhibiting expression of Apaf-1, Bax, Cyto-c, and cleaved Caspase-3. Treatment also increased gene levels of HIF-1α, microRNA 210, ISCU1/2, and COX10, and decreased Caspase-3 gene production.
CONCLUSIONS: RCAE attenuated HH-induced brain injury by regulating apoptosis and mitochondrial energy metabolism via the HIF-1α/microRNA 210/ISCU1/2 (COX10) signaling pathway.
ETHNOPHARMACOLOGICAL RELEVANCE: Rhodiola crenulata, a traditional Tibetan medicine, has shown promise in the treatment of hypobaric hypoxia (HH)-induced brain injury. However, the underlying mechanisms remain unclear. This study investigated the protective effects of R. crenulata aqueous extract (RCAE) on HH-induced brain injury in rats. MATERIALS AND METHODS: An animal model of high-altitude hypoxic brain injury was established in SD rats using an animal decompression chamber for 24 h. Serum and hippocampus levels of superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG), and lactate dehydrogenase (LDH) were then determined using commercial biochemical kits. Neuron morphology and vitality were also evaluated using H&E and Nissl staining, and TUNEL staining was used to examine apoptosis. Gene and protein expression of HIF-1α, microRNA 210, ISCU1/2, COX10, Apaf-1, cleaved Caspase-3, Caspase-3, Bax, Bcl-2, and Cyto-c were determined by western blot, immunohistochemical and qRT-PCR analysis. RESULTS: RCAE administration attenuated HH-induced brain injury as evidenced by decreased levels of MDA, LDH, and GSSG, increased GSH and SOD, improvements in hippocampus histopathological changes, increased cell vitality and ATP level, and reduced apoptotic cell numbers. RCAE treatment also enhanced HIF-1α, ISCU1/2, COX10, and Bcl-2 protein expression, while dramatically inhibiting expression of Apaf-1, Bax, Cyto-c, and cleaved Caspase-3. Treatment also increased gene levels of HIF-1α, microRNA 210, ISCU1/2, and COX10, and decreased Caspase-3 gene production. CONCLUSIONS: RCAE attenuated HH-induced brain injury by regulating apoptosis and mitochondrial energy metabolism via the HIF-1α/microRNA 210/ISCU1/2 (COX10) signaling pathway.
Purpose: To develop an ultra-high performance liquid chromatography (UPLC) - photodiode array (PDA) method to compare the chemical composition of two different medicinal components of Pterocephalus hookeri. Methods: Samples were chromatographically separated in succession using Waters Acquity UPLCR BEH C18 column (2.1 × 100 mm, 1.7 µm) and gradient elution (0.2% phosphoric acid aqueous - acetonitrile). Using partial least squares discriminant analysis and one-way analysis of variance, attempts were made to distinguish different medicinal parts of P. hookeri. Results: Regression equation for 10 compounds showed good linear regression (R² > 0.9994). The relative standard deviations of precision, stability, repeatability and recovery were under 5%. Compared with the aerial plant part, the root had significantly higher levels of sylvestroside I (p < 0.01), cantleyoside (p < 0.001), dipsanosides B (p < 0.01) and dipsanosides A (p < 0.01), but significantly lower levels of loganic acid (p < 0.001), chlorogenic acid (p < 0.01), and isochlorogenic acid (p < 0.01). There were no significant differences between loganin, sweroside and isochlorogenic acid C. Conclusion: The described method is simple, accurate and reproducible, and can be used for the simultaneous determination of 10 major compounds of P. hookeri. The results demonstrate that there is variation in the chemical composition of the aerialpart and root of P. hookeri and that loganic acid and cantleyoside are the primary chemical biomarkers.
This study is to develop an UPLC-PDA method for determination of 10 major components in Pterocephalus. The UPLC-PDA assay was performed on a Waters Acquity UPLCR BEH C₁₈(2.1 mm ×100 mm,1.7 μm), and the column temperature was at 30 ℃. The mobile phase consists of water containing 0.2% phosphoric acid (A) and acetonitrile (B) in gradient elution at a flow rate of 0.4 mL•min⁻¹. The detection wave length was set at 237 and 325 nm, and the injection volume was 1 μL in the UPLC system. The linear range of 10 detected compounds were good (r≥0.999 7), and the overall recoveries ranged from 96.30% to 103.0%, with the RSD ranging from 0.72% to 2.9%. The method was simple, accurate and reproducible, which can be used for the simultaneous determination of the content of ten major components in P. hookeri.
Context: Standardized myrtol, an essential oil containing primarily cineole, limonene and α-pinene, has been used for treating nasosinusitis, bronchitis and chronic obstructive pulmonary disease (COPD).Objective: To investigate the effects of standardized myrtol in a model of acute lung injury (ALI) induced by lipopolysaccharides (LPS).Materials and methods: Male BALB/c mice were treated with standardized myrtol for 1.5 h prior to exposure of atomized LPS. Six hours after LPS challenge, lung injury was determined by the neutrophil recruitment, cytokine levels and total protein concentration in the bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung tissue. Additionally, pathological changes and NF-κB activation in the lung were examined by haematoxylin and eosin staining and western blot, respectively.Results: In LPS-challenged mice, standardized myrtol at a dose of 1200 mg/kg significantly inhibited the neutrophile counts (from 820.97 ± 142.44 to 280.42 ± 65.45, 103/mL), protein concentration (from 0.331 ± 0.02 to 0.183 ± 0.01, mg/mL) and inflammatory cytokines level (TNF-α: from 6072.70 ± 748.40 to 2317.70 ± 500.14, ng/mL; IL-6: from 1184.85 ± 143.58 to 509.57 ± 133.03, ng/mL) in BALF. Standardized myrtol also attenuated LPS-induced MPO activity (from 0.82 ± 0.04 to 0.48 ± 0.06, U/g) and pathological changes (lung injury score: from 11.67 ± 0.33 to 7.83 ± 0.79) in the lung. Further study demonstrated that standardized myrtol prevented LPS-induced NF-κB activation in lung tissues.Discussion and conclusion: Together, these data suggest that standardized myrtol has the potential to protect against LPS-induced airway inflammation in a model of ALI.
Glucose carbon microspheres have been widely used for wastewater treatment as adsorbent owing to their strong adsorption capacity, but for large-scale applications, the glucose carbon microspheres are inconvenient to be recycled from aqueous suspension due to their good suspendability. Moreover, the primitive nature of small particle size, large specific surface area and high surface energy of glucose carbon microspheres make them prone to aggregate and thus, disperse no-effectively for the other extended application. To solve this dilemma, polyester (PET) fibers decorated with glucose carbon microspheres (GC@PFs) were herein fabricated by one-step hydrothermal carbonization with acrylic acid as a coupling agent. The products were characterized by Fourier Transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Boehm titration, X-ray diffraction (XRD), Thermo-gravimetric Analysis (TG), Scanning Electron Microscope (SEM) and zeta potential respectively. The experimental results showed that a large amount of glucose carbon microspheres were evenly dispersed on the surface of carboxyl activated polyester fibers with uniform particle diameter, and the composite fibers showed desirable adsorption ability of cationic dyes for its more negative zeta potential. The dye adsorption isotherm follows Langmuir model and pseudo-second-order kinetic model better. Remarkably, the adsorbent has an excellent recyclability for maintaining a high removal rate (>85%) to dye even after 10 cycles.<br>• Glucose carbon microspheres were evenly distributed on the PET fibers surface that solved the problem of easy aggregation. • The polyester fibers were firstly decorated with glucose carbon microspheres through one-step hydrothermal carbonization. • Acrylic acid maintained the integrity of PET fabric and introduced a quite number of carboxyl groups on the PET surface. • The surface decorated composite material possessed good adsorption property and easy recovery performance. • The glucose carbon microspheres decorated polyester fibers showed a highly selective adsorption for the cationic dyes.
Pages |