<i>Potentilla parvifolia </i>Fisch. (Rosaceae) is a traditional medicinal plant in P. R. China. In this study, seven flavonoids, ayanin (<b>1</b>), tricin (<b>2</b>), quercetin (<b>3</b>), tiliroside (<b>4</b>), miquelianin (<b>5</b>), isoquercitrin (<b>6</b>), and astragalin (<b>7</b>), were separated and purified from ethyl acetate extractive fractions from ethanol extracts of <i>P. parvifolia</i> using a combination of sevaral chromatographic methods. The human neuroblastoma SH-SY5Y cells were differentiated with all trans-retinoic acid and treated with okadaic acid to induce tau protein phosphorylation and synaptic atrophy, which could establish an Alzheimer's disease cell model. The neuroprotective effects of these flavonoids in cellular were evaluated <i>in vitro</i> by this cell model. Results from the Western blot and morphology analysis suggested that compounds <b>3</b> and <b>4</b> had the better neuroprotective effects.
Fatty acids in Herpetospermum seed oil from supercritical CO2 extraction were analyzed by HPLC fluorescence detection (HPLC-FLD) with pre-column derivatization and GC-MS. After derivatizing 39 kinds of saturated and unsaturated fatty acids used 1-[ 2- ( p-toluenesulfonate ) ethyl]-2-phenylimidazole [ 4,5-f] 9,10-phenanthrene ( TSPP ) as pre-column derivatization reagent. All the fatty acid derivatives were separated with a good baseline resolution in conjunction with a gradient elution. The external standard method for the simultaneous quantitative determination of 39 fatty acids was developed and applied for the determination of the free fatty acid contents in Herpetospermum seed oil samples obtained from supercritical CO2 extraction coupled with orthogonal tests, ultrasound-assisted extraction and microwave-assisted reflux extraction. The mass percent of oleic acid, linoleic acid and linolenic acid and the ratio of unsaturated fatty acids and all fatty acids in 9 orthogonal test samples were contrasted. The results indicated that the mass percent of oleic acid, linoleic acid and linolenic acid in Herpetospermum seed oil are up to 34.65% ( 147. 14 mg/g), 22.85% (97.03 mg/g), 20. 86% ( 88. 56 rag/g), respectively, and ratio of unsaturated fatty acids and all fatty acids is 79%. Furthermore, by GC-MS method, the acid catalysis and alkaline catalysis of the methyl esterifying reaction were discussed for the analysis fatty acids in Herpetospermum seed oil, and the optimum GC-MS conditions were obtained. Simultaneously, the characteristics of HPLC and GC-MS methods were discussed about analyzing fatty acids.
<p>A simple and sensitive method for the determination of free fatty acids (FFAs) using acridoné9́ethyĺṕtoluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB́C<sub>8</sub> column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at <sub>ex</sub>=404 and <sub>em</sub>=440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post́column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positivéion detection mode. Nineteen FFAs from the extract of <i>Lomatogonium rotatum</i> are sensitively determined. The results indicate that the plant <i>Lomatogonium rotatum</i> is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C<sub>14</sub>, C<sub>16</sub>, and C<sub>18</sub>. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are >0.9989, and detection limits (at signaĺtónoise of 3:1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are <2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of <i>Lomatogonium rotatum</i> with satisfactory results.</p>
• HPLC-DAD-APCI/MS was set up for analysis of flavonoid aglycones in the RBP. • The method is capable of providing higher sensitivity and repeatability. • Four methods were applied and assessed for extraction of flavonoids from RBP. • The highest extraction efficiency of flavonoids from RBP was achieved by MAE. • MAE is of short extraction time, low solvent consumption and homogeneous conditions.<br>For identification and quantification of flavonoid aglycones in rape bee pollen (RBP) collected from the Qinghai-Tibetan Plateau, a high-performance liquid chromatography (HPLC) separation method with diode array detector (DAD) and atmospheric pressure chemical ionization/mass spectrometric (APCI/MS) detection and four extraction methods (i.e. microwave-assisted extraction, Soxhlet extraction, cold-soaked extraction, and heat reflux extraction) were developed in this study. The identification of flavonoid aglycones was based on retention time and mass spectra by comparison with standards. Results demonstrated that this method showed excellent reproducibility and correlation coefficient, and offered the detection limits of 0.77-15.50 pmol at signal-to-noise ratio of 3. Quercetin and kaempferol were presented in RBP, and microwave-assisted extraction (MAE) was superior to the other three methods in terms of efficiency, convenience and high content of quercetin (1.37 ± 0.059 mg/g) and kaempferol (23.44 ± 0.544 mg/g). Our work indicated that: 1) the proposed HPLC-DAD-APCI/MS was an accurate and precise analysis method to identify and quantify the flavonoid aglycones in RBP; and 2) MAE was efficient to extract flavonoids from RBP with short extraction time, low solvent consumption, and homogeneous extraction conditions.
In this study, a valid method was established for the isolation and purification of flavone glycosides from Hippophae rhamnoides L. seed residues using high-speed counter-current chromatography in one step, with a solvent system of ethyl acetate-methanol-n-butyl alcohol-water (9:1:0.5:9, v/v/v/v). A total of 28.8 mg compound I and 57.3 mg compound II were obtained from 200 mg of flavone H-glycosides rich extract, with purities of 98.3 and 96.4%, respectively. The structures of two compounds were identified by MS and NMR. 3-O-β-D-Sophorosylkaempferol-7-O-{3-O-[2(E)-2,6-dimethyl-6-hydroxyocta-2,7-dienoyl]}-α-L-rhamnoside is compound I and compound II named hippophanone is a new compound were identified by MS and NMR. The method was efficient and convenient, which could be used for the preparative separation of flavone glycosides from H. rhamnoides L. seed residues.
To alleviate the adverse effects of pesticide residues on the environment, development of a more safe, economical, and reliable usage approach of pesticides is critically urgent. In the present study, a novel pesticide carrier LA-NSM (lauric acid-modified Nitraria seed meal) with controlled release property was prepared through grafting esterification of lauric acid onto Nitraria seed meal substrates. The structure of the obtained samples was characterized by Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact angle measurements. The results indicated that LA-NSM products had a well-defined hydrophobic surface and irregular holes for efficient loading of pesticide molecules. Deltamethrin (DEL), a representative insoluble pyrethroid insecticide in water, was deliberately selected as the index pesticide to evaluate the loading and releasing efficiency of LA-NSM. The loading capacity of LA-NSM for DEL can reach about 1068 mg/g. pH, humidity of soil, and temperature had a significant influence on controlled release performance of LA-NSM@DEL. Moreover, the releasing kinetics of LA-NSM@DEL composites could be fitted well with the Higuchi model. Overall, the highly hydrophobic property, excellent loading, and controlled release ability of LA-NSM made it a promising candidate in agricultural applications. [ABSTRACT FROM AUTHOR]
Traditional superabsorbent polymers have wide application potential as an adsorbent, but the poor physical and mechanical properties limit their further applications. To tentatively overcome this dilemma, a novel poly(acrylic acid)/poly(vinyl alcohol)/yeast superabsorbent polymers (PAA/PVA/yeast SAPs) with interpenetrating polymer networks (IPNs) were fabricated herein via solution polymerization. The mechanical stability tests showed that the resulting products could desirably resist the destruction of shear flow (<5000 rpm) and load pressure (<3 kg). The effects of yeast content, pH, contact time, initial dye concentration and temperature were systematically studied to evaluate their adsorption properties. Consecutive five cycles of adsorption-desorption indicated that their easy regeneration and reusability. More importantly, the PVA/PAA/yeast SAPs displayed brilliant pH-dependent selective adsorption for dyes in dye mixtures. It is believed hereby that the PAA/PVA/yeast SAPs can be expected to be economically and technically feasible for the scalable treatment of dyes wastewater.
<br>Display Omitted<br>• Conversion of waste buckthorn branches to a value-added bio-carbon product. • Practical adsorbent for removal and destruction of DC contaminants. • Consecutive biosorption and heterogeneous Fenton oxidation regeneration cycles. • Composite biosorbent with β-FeOOH nanoparticles and in-situ catalytic regeneration properties.<br>Akaganeite (β-FeOOH) nanoparticles were successfully anchored on the surface of porous sea buckthorn biocarbon (SBC) via a simple low-temperature hydrothermal process without use of surfactants or external forces. The SBC@β-FeOOH composite was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). On the basis of characterization methods, a possible mechanism of formation of the SBC@β-FeOOH composite was discussed. The SBC@β-FeOOH composite was used in fixed-bed columns for the effective removal of doxycycline (DC) from an aqueous solution, by the synergistic effect of adsorption and subsequent Fenton-like oxidation reaction, which oxidized the sorbed DC. The effects of inlet DC concentration (22-32 mg/L) feed flow rate (1-3 mL/min) SBC@β-FeOOH bed depth (0.7-1.5 cm) and pH (2-11) on the adsorption breakthrough profiles were investigated. The adsorption process was controlled by the ionic speciation of the adsorbate DC and the available binding sites of SBC@β-FeOOH. It was simulated by the Thomas and Yoon-Nelson models under different conditions. The bed of SBC@β-FeOOH saturated with DC was readily regenerated, in situ, by a heterogeneous Fenton-like oxidation reaction. The synergistic effect resulting from the biosorption nature of SBC and the catalytic oxidation properties of the supported β-FeOOH nanoparticles results in a new promising composite material for water treatment and purification.
High-speed counter-current chromatography (CCC) was firstly and successfully applied for the preparative separation and purification of alkaloids from crude extract of Hypecoum leptocarpum. After the measurement of partition coefficient of five target alkaloids in the two-phase solvent systems, the CCC was performed well with a two-phase solvent system composed of tetrachloromethane-chloroform-methanol-0.1 M HCl at a volume ratio of 1.5 : 2.5 : 3 : 2 (V/V/V/V). The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. From 120 mg crude extract, 5 mg leptopidine, 32 mg oxohydrastinine, 27 mg (-)-N-methylanadine, 7 mg N-feruloyltyramine and 3 mg hypecoleptopine could be successfully separated. The amides alkaloid, N-feruloyltyramine, was firstly separated from H. leptocarpum. High-performance liquid chromatography analysis showed that the purity of each of the five target alkaloids was over 92%. Their chemical structures were confirmed by (1)H-NMR and (13)C-NMR data.
High-speed counter-current chromatography (CCC) was firstly and successfully applied for the preparative separation and purification of alkaloids from crude extract of Hypecoum leptocarpum. After the measurement of partition coefficient of five target alkaloids in the two-phase solvent systems, the CCC was performed well with a two-phase solvent system composed of tetrachloromethane-chloroform-methanol-0.1 M HCl at a volume ratio of 1.5 : 2.5 : 3 : 2 (V/V/V/V). The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase. From 120 mg crude extract, 5 mg leptopidine, 32 mg oxohydrastinine, 27 mg (-)-N-methylanadine, 7 mg N-feruloyltyramine and 3 mg hypecoleptopine could be successfully separated. The amides alkaloid, N-feruloyltyramine, was firstly separated from H. leptocarpum. High-performance liquid chromatography analysis showed that the purity of each of the five target alkaloids was over 92%. Their chemical structures were confirmed by (1)H-NMR and (13)C-NMR data.
Fenugreek (Trigonella foenum-graecum L.) is a well-known annual plant that is widely distributed worldwide and has possessed obvious hypoglycemic and hypercholesterolemia characteristics. In our previous study, three polyphenol stilbenes were separated from fenugreek seeds. Here, we investigated the effect of polyphenol stilbenes on adipogenesis and insulin resistance in 3T3-L1 adipocytes. Oil Red O staining and triglyceride assays showed that polyphenol stilbenes differently reduced lipid accumulation by suppressing the expression of adipocyte-specific proteins. In addition, polyphenol stilbenes improved the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) by promoting the phosphorylation of protein kinase B (AKT) and AMP-activated protein kinase (AMPK). In present studies, it was found that polyphenol stilbenes had the ability to scavenge reactive oxygen species (ROS). Results from adenosine triphosphate (ATP) production and mitochondrial membrane potentials suggested that mitochondria play a critical role in insulin resistance and related signaling activation, such as AKT and AMPK. Rhaponticin, one of the stilbenes from fenugreek, had the strongest activity among the three compounds in vitro. Future studies will focus on mitochondrial biogenesis and function.
Fenugreek (Trigonella foenum-graecum L.) is a well-known annual plant that is widely distributed worldwide and has possessed obvious hypoglycemic and hypercholesterolemia characteristics. In our previous study, three polyphenol stilbenes were separated from fenugreek seeds. Here, we investigated the effect of polyphenol stilbenes on adipogenesis and insulin resistance in 3T3-L1 adipocytes. Oil Red O staining and triglyceride assays showed that polyphenol stilbenes differently reduced lipid accumulation by suppressing the expression of adipocyte-specific proteins. In addition, polyphenol stilbenes improved the uptake of 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG) by promoting the phosphorylation of protein kinase B (AKT) and AMP-activated protein kinase (AMPK). In present studies, it was found that polyphenol stilbenes had the ability to scavenge reactive oxygen species (ROS). Results from adenosine triphosphate (ATP) production and mitochondrial membrane potentials suggested that mitochondria play a critical role in insulin resistance and related signaling activation, such as AKT and AMPK. Rhaponticin, one of the stilbenes from fenugreek, had the strongest activity among the three compounds in vitro. Future studies will focus on mitochondrial biogenesis and function.
High-speed counter-current chromatography (HSCCC) was successfully applied for the first time to isolate and purify four cis-trans isomers of coumaroylspermidine analogs from Safflower. HSCCC separation was achieved with a two-phase solvent system composed of chloroform-methanol-water (1:1:1, v/v/v) with the upper phase as the mobile phase. In a single run, a total of 1.3mg of N(1), N(5), N(10)-(E)-tri-p-coumaroylspermidine (EEE), 4.4mg of N(1)(E)-N(5)-(Z)-N(10)-(E)-tri-p-coumaroylspermidine (EZE), 7.2mg of N(1)(Z)-N(5)-(Z)-N(10)-(E)-tri-p-coumaroylspermidine (ZZE), and 11.5mg of N(1),N(5),N(10)-(Z)-tri-p-coumaroylspermidine (ZZZ) were obtained from 100mg of crude sample. High Performance Liquid Chromatography (HPLC) analysis showed that the purities of these four components are 95.5%, 98.1%, 97.5% and 96.2%, respectively. The chemical structures were identified by ESI-MS, (1)H NMR and (13)C NMR.
High-speed counter-current chromatography (HSCCC) was successfully applied for the preparative separation and purification of N-feruloyl serotonin (NF) and N-(p-coumaroyl) serotonin (NP) from safflower seed meal. After the measurement of partition coefficient of the two target compounds in the two-phase solvent systems, the HSCCC was performed well with a two-phase solvent system composed of CHCl3-methanol-0.1 M HCl at a volume ratio of 1 : 1 : 1, v/v. The upper phase was used as stationary phase and the lower phase was used as mobile phase. Under the optimized condition, 7.5 mg NF and 6.9 mg NP were separated from 40 mg crude sample with the purity of 98.8 and 97.3%, respectively. The structures of the isolated compounds were identified by (1)H NMR and (13)C NMR.
OBJECTIVES: To investigate the protective effect of Herpetospermum pedunculosum (H. pedunculosum) seed oil against carbon tetrachloride (CCl4)-induced liver damage.METHODS: This experimental study was conducted at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, and Yantai University, China from November 2012 to May 2013. The H. pedunculosum seed oil was extracted using supercritical carbon dioxide. The antioxidant activities of H. pedunculosum seed oil were assayed in vitro by 2,2-diphenyl-1-picrylhydrazyl assay, lipid peroxidation assay, and antihemolytic assay. Adult Sprague Dawley rats were randomly divided into 6 groups (10 rats/group) including control, CCl4, CCl4+bifendate, and CCl4+H. pedunculosum seed oil (3 different doses) groups.
RESULTS: The CCl4-induced liver lesions include hepatocyte necrosis, ballooning degeneration, calcification, and fibrosis. Moreover, CCl4 damage results in an obvious increase of serum triglycerides, high-density lipoprotein, low-density lipoprotein, malondialdehyde, total bilirubin, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity. In addition, CCl4 also significantly decreased the activities of superoxide dismutase (SOD). By contrast, H. pedunculosum seed oil administration significantly ameliorated the CCl4-induced liver lesions, lowered the serum levels of hepatic enzyme markers, and increased the activities of SOD.
CONCLUSION: The results of this study show that H. pedunculosum seed oil can be proposed to protect the liver against CCl4-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its potent antioxidant and free radical scavenging effect.
OBJECTIVES: To investigate the protective effect of Herpetospermum pedunculosum (H. pedunculosum) seed oil against carbon tetrachloride (CCl4)-induced liver damage. METHODS: This experimental study was conducted at the Northwest Institute of Plateau Biology, Chinese Academy of Sciences, and Yantai University, China from November 2012 to May 2013. The H. pedunculosum seed oil was extracted using supercritical carbon dioxide. The antioxidant activities of H. pedunculosum seed oil were assayed in vitro by 2,2-diphenyl-1-picrylhydrazyl assay, lipid peroxidation assay, and antihemolytic assay. Adult Sprague Dawley rats were randomly divided into 6 groups (10 rats/group) including control, CCl4, CCl4+bifendate, and CCl4+H. pedunculosum seed oil (3 different doses) groups. RESULTS: The CCl4-induced liver lesions include hepatocyte necrosis, ballooning degeneration, calcification, and fibrosis. Moreover, CCl4 damage results in an obvious increase of serum triglycerides, high-density lipoprotein, low-density lipoprotein, malondialdehyde, total bilirubin, alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity. In addition, CCl4 also significantly decreased the activities of superoxide dismutase (SOD). By contrast, H. pedunculosum seed oil administration significantly ameliorated the CCl4-induced liver lesions, lowered the serum levels of hepatic enzyme markers, and increased the activities of SOD. CONCLUSION: The results of this study show that H. pedunculosum seed oil can be proposed to protect the liver against CCl4-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its potent antioxidant and free radical scavenging effect.
• Simultaneously identified and quantified 18 phenolic compounds from LR fruit by UPLC-Q-Orbitrap MS. • Catechin, naringenin and 9 phenolic acids are the first time to conduct qualitative and quantitative analysis in LR. • Total phenolics content and total anthocyanin content were determined. • The antioxidant activities in vitro of the LR were also evaluated.<br><b>Lycium ruthenicum</b> Murray (LR) is a functional food, and it has long been used in traditional folk medicine. However, detailed qualitative and quantitative analyses related to its phenolic compounds remains scarce. This work reports, for the first time, the establishment of a rapid method for simultaneous identification and quantification of 25 phenolic compounds by UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). This method was validated by LODs, LOQs, precision, repeatability, stability, mean recovery, recovery range and RSD. The confirmed method was applied to the analysis of phenolic compounds in LR. Finally, 18 phenolic compounds in LR were qualitatively and quantitatively analyzed. Among them, 11 constituents were detected for the first time, which included two flavonoids (catechin and naringenin) and seven phenolic acids (gallic acid, vanillic acid, 2,4-dihydroxybenzoic acid, veratronic acid, benzoic acid, ellagic acid and salicylic acid). Moreover, Phloretin and protocatechuate, belonging to the dihydrochalcone flavonoid and protocatechuic acid respectively, were also identified and quantified. The total phenolics content (20.17 ± 2.82 mg/g) and the total anthocyanin content (147.43 ± 1.81 mg/g) were determined. In addition, the antioxidant activities of the LR extract were evaluated through 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP) and total antioxidant activity (T-AOC) assays.
Lycium ruthenicum Murray (LR) is a functional food, and it has long been used in traditional folk medicine. However, detailed qualitative and quantitative analyses related to its phenolic compounds remains scarce. This work reports, for the first time, the establishment of a rapid method for simultaneous identification and quantification of 25 phenolic compounds by UPLC-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS). This method was validated by LODs, LOQs, precision, repeatability, stability, mean recovery, recovery range and RSD. The confirmed method was applied to the analysis of phenolic compounds in LR. Finally, 18 phenolic compounds in LR were qualitatively and quantitatively analyzed. Among them, 11 constituents were detected for the first time, which included two flavonoids (catechin and naringenin) and seven phenolic acids (gallic acid, vanillic acid, 2,4-dihydroxybenzoic acid, veratronic acid, benzoic acid, ellagic acid and salicylic acid). Moreover, Phloretin and protocatechuate, belonging to the dihydrochalcone flavonoid and protocatechuic acid respectively, were also identified and quantified. The total phenolics content (20.17 ± 2.82 mg/g) and the total anthocyanin content (147.43 ± 1.81 mg/g) were determined. In addition, the antioxidant activities of the LR extract were evaluated through 2,2-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing antioxidant power (FRAP) and total antioxidant activity (T-AOC) assays.
INTRODUCTION: The dried seeds of Iris lactea have been used in traditional Chinese medicine. Previous studies have been focused on irisquinones while other chemical components are rarely reported. OBJECTIVE: To establish an efficient high-speed counter-current chromatography (HSCCC) separation method with continuous sample load (CSL) and double-pump balancing (DPB) mode to isolate proanthocyanidins from I. lactea. METHODS: Firstly, an ethyl acetate extract of I. lactea was pre-fractionated by silica column chromatography for the enrichment of proanthocyanidins. Secondly, the enriched proanthocyanidins sample (EPS) was further fractionated by HSCCC with a two-phase solvent system ethyl acetate:n-butanol:water (9:1:10, v/v/v) using DPB mode. The flow rate of the two phases was 2.2 mL/min, the revolution speed was 900 rpm, the separation temperature was 30 °C and the detection wavelength was 280 nm. Finally, the structures of the three isolated proanthocyanidins were elucidated by spectroscopic methods and compared with published data. RESULTS: Under the optimized conditions, 600 mg of the EPS with six continuous injections (100 mg/time) was fractionated, yielding 57 mg of prodelphinidin B3, 198 mg of procyanidin B3, and 162 mg of procyanidin B1, at purities of 97.2%, 98.1% and 97.3%, respectively. CONCLUSIONS: The HSCCC separation method with CSL and DPB proved to be rapid, convenient and economical, constituting an efficient strategy for the isolation of proanthocyanidins.
NSM-<i>g</i>-P(MMA-<i>co</i>-BA) resin with super oil-absorbent capability was prepared by grafting co-polymerization using Nitraria seeds meal as filler, methyl-meth-acrylate (MMA) and butyl-acrylate (BA) as monomers, <i>N,N′</i>-methylene-bis-acrylamide (MBA) as crosslinker and peroxide-benzoyl (BPO) as initiator. The structure of obtained products was analyzed using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The oil absorbency, reusability, oil-retention capacity, thermodynamics, and the removal of oil from the surface of 0.9 wt% NaCl solutions were examined further. The results showed that NSM-<i>g</i>-P(MMA-<i>co</i>-BA) can absorb lubrication up to 29.6 times of its weight, 24.3 times for colza oil, 22.7 times for diesel, and 21 times for gasoline. The exhausted NSM-<i>g</i>-P(MMA-<i>co</i>-BA) can be recollected and recovered through extraction or drying approach. More importantly, the oil sorption capacity of recovered NSM-<i>g</i>-P(MMA-<i>co</i>-BA) only has a slight decline after six sorption cycles. The thermodynamic studies indicated that adsorption procedure with complex physical and chemical sorption is spontaneous and exothermic. In general, the present composite resins have exhibited potential applications in cleanup of oil spills because of their good hydrophobicity, lipophilicity, and excellent network structure. Also, the findings of this study might provide a convenient and economic method for fast and selective removal of oil from surface of wastewater. POLYM. COMPOS., 39:1051-1063, 2018. © 2016 Society of Plastics Engineers
Enzyme inhibition based drug screening strategy has been widely employed for new drug discovery. But this strategy faces some challenges in practical application especially for the trace active compound screening from natural products such as the stability of enzyme and the sensitivity of screening approach. Inspired by the above, we for the first time demonstrate the self-assembly of α-glucosidase (GAA) and glucose oxidase (GOx) into one multi-enzymes-inorganic nanoreactor with hierarchical structure (flower shape). The hybrid enzyme nanoreactor enjoys the merits including the character of assembly line, the enhanced enzymatic activity and robust stability. The flower shape of enzyme nanoreactor possessed a bigger specific surface area, facilitating the trace GAA inhibitor detection. Based on the above, we proposed an enzyme nanoreactor mediated plasmonic sensing strategy for anti-diabetic drug screening. First, maltose was chosen as the substrate for GAA and the generated glucose were immediately utilized by GOx to generate H2O2, and finally, H2O2 etched the Ag nanoprism to round nanodiscs, resulting in the blue shift of surface plasmon resonance (SPR) absorption band. With the aid of hybrid enzyme nanoreactor guided SPR, the ultrasensitive screening of GAA inhibitor (i.e. anti-diabetic drug) can be realized with the detection limit of 5nM for acarbose. The proposed approach was successfully utilized for GAA inhibitor screening from natural products. We anticipate that the proposed sensing method may provide new insights and inspirations in the enzyme inhibition based drug discovery and clinical diagnosis.
A new and sensitive pre-column derivatization method was developed for the analysis of melamine leached from tableware by high performance liquid chromatography (HPLC) with fluorescence detection. The HPLC sensitivity was greatly enhanced by introducing 10-methyl-acridone-2-sulfonyl chloride (MASC) with excellent fluorescence property into the melamine molecule. Meanwhile, derivatization also greatly increased the hydrophobicity of melamine. Therefore, the common reversed phase column can be used for the HPLC analysis of highly hydrophilic melamine. The detection limit obtained by the proposed method was lower than 0.40 μg/L. This is the first time that HPLC with fluorescence detection was applied to the analysis of melamine. The proposed method was successfully applied to the analysis of melamine leached from tableware. The results indicated that the leaching of melamine from tableware was obvious when hot water or milk was added.<br>• HPLC with fluorescence detection was applied to the analysis of melamine for the first time. • Reversed phase HPLC analysis of melamine was achieved with no ion-pair reagents needed. • HPLC sensitivity was greatly enhanced through derivatization.
Recent researches shows that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. More precise analysis of AA composition is reckoned to be one of the most important applications in the biomedical and pharmaceutical fields. In this paper, we develop a sample, sensitive and mild method using 2-[2-(7H-dibenzo[a,g]carbazol-7-yl)-ethoxy]ethyl chloroformate (DBCEC) as A labeling reagent for AA determination by high-performance liquid chromatography (HPLC) with fluorescence detection (FLD) and identification with mass spectroscopy. The maximum excitation and emission wavelengths for DBCEC-AA derivatives were 300 and 395 nm, respectively. This method, in conjunction with a gradient elution, offered a baseline resolution of 20 AA on a reversed-phase Hypersil BDS C<sub>18</sub> column. LC separation for the derivatized AA showed good reproducibility, and all AA were found to give excellent linear responses with correlation coefficients > 0.9993. The calculated detection limits with a 25.0 fmol injection of each AA (at a signal-to-noise ratio of 3:1) ranged from 2.62 to 22.6 fmol. This method was applied to determine the AA composition in <i>Saussurea involucrate</i> and <i>Artemisia capillaris</i> Thunb. Meanwhile, this method exhibits a powerful potential for trace analysis of AA from biomedicine, foodstuff and other complex samples. Copyright © 2010 John Wiley & Sons, Ltd.
Pages |