Skip to main content Skip to search
Displaying 426 - 450 of 476

Pages

  • Page
  • of 20
[Obbectives] To study the optimal conditions for extracting procyanidins from Lycium ruthenicum Murr. with sub-critical fluid R134a (1,1,1,2-tetrafluoroethane) in 1 L extraction kettle. [Methods] Taking the extraction rate of procyanidins as an indicator, the influence of preesure, temperature, and extraction time on extraction rate of procyanidins from L. Ruthenicum Murr. was studied by single factor experimental methods and orthogonal array design. [Results] The order of factors affecting extraction rate of procyanidins was extraction temperature k extraction preesure k extraction time. The optimum extraction conditions were as follows % the extraction rate of procyanidins from L. ruthenicum Murr. was the highest with extraction preesure of 1.2 MPa, extraction temperature of 5 0 j and extraction time of 90 min. The content of procyanidins in L. ruthenicum Murr. from different producing areas was determined by vaniilin-HCl method under the optima conditions. [Conclusions] The method has the advantages of easy operation, good selectivity, low extraction temperature and high extraction efficiency, which is suitable for extraction of procyanidins in L. ruthenicum Murr. [ABSTRACT FROM AUTHOR]

Qumazi is a commonly used Tibetan medicine. With a long history, it can be found in the Four Medical Tantras written by gYu-thog rNying-ma Yon-tan mGon-po since the 8th century AD. Qumazi grows in mudflats and fields, including species growing in highlands, lowlands, mountains and farmlands. According to records in Crystal Beads Materia Medica, it features green sword-shaped leaves, thin stems with red veins, inserted panicles, white chicken-like flowers and copper needle row-like roots. However, there are many inconsistent morphological descriptions for Qumazi plants in many Chinese versions of Tibetan medicine books. In this article, after studying ancient and modern Tibetan medicine books, consulting experts and conducting surveys, the authors confirmed that Qumazi belongs to Rheum of Polygonaceae, including Rheum nobile Hook. f. et. Thoms, R. globulosum Gage, R. alexandrae Hook. f. et. Thoms, R. pumilum Maxim and R. delavayi Franch. In some regions, Qumazi is substituted by R. spiciforme Royle and R. przewalskyi Losinsk. After the Chinese version of Qinghai-Tibet Plateau Drug Illustrations was published in 1972, Qumazi has been miswritten as P. sibiricum Laxm in many Chinese versions of Tibetan medicine books, perhaps because P. sibiricum Laxm has many similar features with Qumazi as described in Crystal Beads Materia Medica and then is mistranslated from Tibetan to Chinese versions. According to records, Qumazi can reduce edema and is mainly applied to treat the minamata disease in clinic.

Using paradigms from game theory, researchers have reported abnormal decision-making in social context in patients with schizophrenia. However, less is known about the underpinnings of the impairment. This study aimed to test whether theory of mind (ToM) deficits and/or neurocognitive dysfunctions mediate impaired social decision-making in patients with schizophrenia.

In a search for naturally occurring antibacterial compounds in medicinal plants, six hitherto unknown thiophene acetylenes, named 10,11-threo-xanthopappin D, 10,11-erythro-xanthopappin D, 10,11-cis-xanthopappin B, 5-(but-4-chloro-3-hydroxy-1-ynyl)-2-(Z)-pent-3-ene-1-ynylthiophene, 5-(but-4-chloro-3-hydroxy-1-ynyl)-2-(E)-pent-3-ene-1-ynylthiophene, 5-(but-3,4-dihydroxy-1-ynyl)-2-(Z)-pent-3-ene-1-ynylthiophene and two furanosesquiterpenes, as well as fifteen known compounds, were isolated from Xanthopappus subacaulis, which has been used as a traditional Tibetan medicine in China. A biosynthetic pathway to thiophene acetylenes was proposed and, the isolated compounds were tested for their antibacterial activity against five bacteria. Within the series of thiophene acetylenes tested, 10,11-threo-xanthopappin D with a threo configuration exhibited strong activity against Bacillus subtilis, with a minimum inhibitory concentration (MIC) of 7.25μg/mL, whereas 10,11-erythro-xanthopappin D with erythro configuration possessed broad-spectrum antibacterial activity against Escherichia coli, Bacillus cereus, Staphylococcus aureus and Erwinia carotovora, with MICs of 12.5, 15.5, 7.25 and 7.25μg/mL, respectively. Meanwhile, the compounds 10,11-cis-xanthopappin B, xanthopappin B, 5-(but-4-chloro-3-hydroxy-1-ynyl)-2-(Z)-pent-3-ene-1-ynylthiophene and 5-(but-4-chloro-3-hydroxy-1-ynyl)-2-(E)-pent-3-ene-1-ynylthiophene substituted with a Cl atom at C-14 showed moderate inhibitory activity against E. coli, B. cereus, S. aureus, E. carotovora and B. subtilis, with MICs ranging from 31.25 to 62.5μg/mL. The structures of these compounds were elucidated through the comprehensive analysis of spectroscopic data, including UV, IR, MS and NMR.

Two novel organic amide alkaloids, 4-[(<i>E</i>)-<i>p</i>-coumaroylamino]butan-1-ol (<b>1</b>) and 4-[(<i>Z</i>)-<i>p</i>-coumaroylamino]butan-1-ol (<b>2</b>), together with a rare pyridoindole alkaloid, hippophamide (<b>3</b>), were isolated from the seed residue of <i>Hippophae rhamnoides</i> Linn. subsp. <i>sinensis</i> Rousi. Their structures were determined by spectroscopic means. The results show that compounds <b>1</b> and <b>2</b> are (<i>E</i>/<i>Z</i>)<i>-</i>isomers, compound <b>3</b>, a pyridoindole alkaloid concerted with <i>γ</i>-lactam ring.

Three new flavone C-glycosides, paraquinins A-C, were isolated from the aerial parts of Paraquilegia microphylla (Royle) Dromm. et Hutch, a Tibetan medicine distributed in the Qinghai-Tibet plateau. On the basis of 1D and 2D NMR evidence, their structures were elucidated as acacetin-6-C-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (1), acacetin-6-C-α-L-rhamnopyranosyl-(1 → 2)-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (2), and acacetin-6-C-α-L-rhamnopyranosyl-(1 → 2)-(6'''-O-E-feruloyl)-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (3).

<br>Display Omitted<br>• Three new monoterpene glycosides (<b>1</b>-<b>3</b>) were isolated from <b>Sibiraea laevigata</b> (L.) Maxim. • Fourteen known compounds (<b>4</b>-<b>17</b>) were also obtained from the title plant. • All of the isolated compounds were evaluated for their anti-oxidant and α-glucosidase inhibitory activities. • Compounds <b>7</b> and <b>17</b> exhibited α-glucosidase inhibitory effect with IC50 values of 220.0 and 113.0 μM, respectively.<br>Three new compounds, 3,7-dimethy-7-methoxy-3-octene-5-one-1-<b>O</b>-<b>β</b>-d-glucopyranoside (1), 3,7-dimethy-7-methoxy-3(<b>Z</b>)-octene-5-one-1-<b>O</b>-<b>β</b>-d-glucopyranoside (2) and 3,7-dimethy-3-hydroxy-6-octene-5-one-1-<b>O</b>-<b>β</b>-d-glucopyranoside (3), together with fourteen known compounds (4-17) were isolated from the leaves and shoots of <b>S. laevigata</b>. The structures of the new compounds were elucidated on the basis of extensive spectroscopic analysis, including one- and two-dimensional NMR, as well as mass spectral data. All isolates were evaluated for their α-glucosidase inhibitory and antioxidant activities. The results demonstrated that 3,7-dimethyl-3(Z),6-ocatdien-5-one-1-<b>O</b>-<b>β</b>-d-glucoside (7) and sitosteryl <b>β</b>-d-glucoside (17) exhibited α-glucosidase inhibitory effects with IC50 values of 220.0 and 113.0 μM, respectively.

Liver fibrosis is a severe health problem, threatening the life quality and causing death, raising great concerns worldwide. Shi-Wei-Gan-Ning-Pill (SWGNP) is a traditional Tibetan recipe used to treat hepatic injuries; however, its hepatoprotective mechanism has not yet fully clarified. In this study, histological staining, biochemical assays, and elements determination were applied to evaluate the anti-fibrotic efficacy of SWGNP on a carbon tetrachloride (CCl4) induced hepato-fibrosis rat model. NMR-based metabolomics combined with orthogonal partial least squares-discriminant analysis (OPLS-DA), canonical regression analysis, and correlation networks analysis was used to characterize the potential biomarkers as well as metabolic pathways associated with the hepatoprotective activity of SWGNP. The results showed that SWGNP could significantly attenuate the pathological changes and decrease the levels of fibrosis markers (ColIV, HA, LN, and PCIII), and regulate the disordered elements distribution. Multivariate analysis and correlation network analysis revealed that SWGNP could protect rats against CCl4-induced liver fibrosis through anti-oxidation, repairing the impaired energy metabolisms and reversing the disturbed amino acids and nucleic acids metabolisms. In conclusion, this integrated metabolomics approach provided new insights into the mechanism of the hepatoprotective effect of SWGNP in liver fibrosis disease.

Liver fibrosis is a severe health problem, threatening the life quality and causing death, raising great concerns worldwide. Shi-Wei-Gan-Ning-Pill (SWGNP) is a traditional Tibetan recipe used to treat hepatic injuries; however, its hepatoprotective mechanism has not yet fully clarified. In this study, histological staining, biochemical assays, and elements determination were applied to evaluate the anti-fibrotic efficacy of SWGNP on a carbon tetrachloride (CCl4) induced hepato-fibrosis rat model. NMR-based metabolomics combined with orthogonal partial least squares-discriminant analysis (OPLS-DA), canonical regression analysis, and correlation networks analysis was used to characterize the potential biomarkers as well as metabolic pathways associated with the hepatoprotective activity of SWGNP. The results showed that SWGNP could significantly attenuate the pathological changes and decrease the levels of fibrosis markers (ColIV, HA, LN, and PCIII), and regulate the disordered elements distribution. Multivariate analysis and correlation network analysis revealed that SWGNP could protect rats against CCl4-induced liver fibrosis through anti-oxidation, repairing the impaired energy metabolisms and reversing the disturbed amino acids and nucleic acids metabolisms. In conclusion, this integrated metabolomics approach provided new insights into the mechanism of the hepatoprotective effect of SWGNP in liver fibrosis disease.

Alzheimer disease (Alzheimer Disease, AD) is one of the most common type in senile dementia. Its main pathological features were that a large number of senile plaques gathered in brain extracellular and tangles fibrosis appeared in nerve cells. Currently, the pathogenesis of AD is still uncertain, and scale investigation and combined brain CT, MRI data were analyzed mainly for clinical diagnosis. Mitigation and improvement of the nervous system activity to interfere with the subsequent behavior of the patients are the main methods for treatment. In clinical no drug can really prevent and cure AD. From the view point of Tibetan medicine studies, Tibetan medicine RNSP has effect on improving memory and repairing the neurons in the brain. In this study, we combined the characteristics of AD pathology, pathogenesis, diagnosis and treatment methods to explore the feasibility of Tibetan medicine RNSP for the treatment of AD to provide new ideas for the diagnosis and treatment of AD.

Alzheimer disease (Alzheimer Disease, AD) is one of the most common type in senile dementia. Its main pathological features were that a large number of senile plaques gathered in brain extracellular and tangles fibrosis appeared in nerve cells. Currently, the pathogenesis of AD is still uncertain, and scale investigation and combined brain CT, MRI data were analyzed mainly for clinical diagnosis. Mitigation and improvement of the nervous system activity to interfere with the subsequent behavior of the patients are the main methods for treatment. In clinical no drug can really prevent and cure AD. From the view point of Tibetan medicine studies, Tibetan medicine RNSP has effect on improving memory and repairing the neurons in the brain. In this study, we combined the characteristics of AD pathology, pathogenesis, diagnosis and treatment methods to explore the feasibility of Tibetan medicine RNSP for the treatment of AD to provide new ideas for the diagnosis and treatment of AD.

Zuotai is composed mainly of β-HgS, while cinnabar mainly contains α-HgS. Both forms of HgS are used in traditional medicines and their safety is of concern. This study aimed to compare the hepatotoxicity potential of Zuotai and α-HgS with mercury chloride (HgCl2) and methylmercury (MeHg) in mice. Mice were orally administrated with Zuotai (30 mg/kg), α-HgS (HgS, 30 mg/kg), HgCl2 (33.6 mg/kg), or CH3HgCl (3.1 mg/kg) for 7 days, and liver injury and gene expressions related to toxicity, inflammation and Nrf2 were examined. Animal body weights were decreased by HgCl2 and to a less extent by MeHg. HgCl2 and MeHg produced spotted hepatocyte swelling and inflammation, while such lesions are mild in Zuotai and HgS-treated mice. Liver Hg contents reached 45-70 ng/mg in HgCl2 and MeHg groups; but only 1-2 ng/mg in Zuotai and HgS groups. HgCl2 and MeHg increased the expression of liver injury biomarker genes metallothionein-1 (MT-1) and heme oxygenase-1 (HO-1); the inflammation biomarkers early growth response gene (Egr1), glutathione S-transferase (Gst-mu), chemokine (mKC) and microphage inflammatory protein (MIP-2), while these changes were insignificant in Zuotai and HgS groups. However, all mercury compounds were able to increase the Nrf2 pathway genesNAD(P)H: quinone oxidoreductase 1 (Nqo1) and Glutamate-cysteine ligase, catalytic subunit (Gclc). In conclusion, the Tibetan medicine Zuotai and HgS are less hepatotoxic than HgCl2 and MeHg, and differ from HgCl2 and MeHg in hepatic Hg accumulation and toxicological responses.

UNLABELLED: Zuotai is composed mainly of β-HgS, while cinnabar mainly contains α-HgS. Both forms of HgS are used in traditional medicines and their safety is of concern. This study aimed to compare the hepatotoxicity potential of Zuotai and α-HgS with mercury chloride (HgCl2) and methylmercury (MeHg) in mice. Mice were orally administrated with Zuotai (30 mg/kg), α-HgS (HgS, 30 mg/kg), HgCl2 (33.6 mg/kg), or CH3HgCl (3.1 mg/kg) for 7 days, and liver injury and gene expressions related to toxicity, inflammation and Nrf2 were examined. Animal body weights were decreased by HgCl2 and to a less extent by MeHg. HgCl2 and MeHg produced spotted hepatocyte swelling and inflammation, while such lesions are mild in Zuotai and HgS-treated mice. Liver Hg contents reached 45-70 ng/mg in HgCl2 and MeHg groups; but only 1-2 ng/mg in Zuotai and HgS groups. HgCl2 and MeHg increased the expression of liver injury biomarker genes metallothionein-1 (MT-1) and heme oxygenase-1 (HO-1); the inflammation biomarkers early growth response gene (Egr1), glutathione S-transferase (Gst-mu), chemokine (mKC) and microphage inflammatory protein (MIP-2), while these changes were insignificant in Zuotai and HgS groups. However, all mercury compounds were able to increase the Nrf2 pathway genes NAD(P)H: quinone oxidoreductase 1 (Nqo1) and Glutamate-cysteine ligase, catalytic subunit (Gclc). In conclusion, the Tibetan medicine Zuotai and HgS are less hepatotoxic than HgCl2 and MeHg, and differ from HgCl2 and MeHg in hepatic Hg accumulation and toxicological responses.

Background. The circadian clock is involved in drug metabolism, efficacy and toxicity. Drugs could in turn affect the biological clock as a mechanism of their actions. Zuotai is an essential component of many popular Tibetan medicines for sedation, tranquil and "detoxification," and is mainly composed of metacinnabar (β-HgS). The pharmacological and/or toxicological basis of its action is unknown. This study aimed to examine the effect of Zuotai on biological clock gene expression in the liver of mice. Materials and methods. Mice were orally given Zuotai (10 mg/kg, 1.5-fold of clinical dose) daily for 7 days, and livers were collected every 4 h during the 24 h period. Total RNA was extracted and subjected to real-time RT-PCR analysis of circadian clock gene expression. Results. Zuotai decreased the oscillation amplitude of the clock core gene Clock, neuronal PAS domain protein 2 (Npas2), Brain and muscle Arnt-like protein-1 (Bmal1) at 10:00. For the clock feedback negative control genes, Zuotai had no effect on the oscillation of the clock gene Cryptochrome (Cry1) and Period genes (Per1-3). For the clock-driven target genes, Zuotai increased the oscillation amplitude of the PAR-bZip family member D-box-binding protein (Dbp), decreased nuclear factor interleukin 3 (Nfil3) at 10:00, but had no effect on thyrotroph embryonic factor (Tef); Zuotai increased the expression of nuclear receptor Rev-Erbα (Nr1d1) at 18:00, but had little influence on the nuclear receptor Rev-Erbβ (Nr1d2) and RORα. Conclusion. The Tibetan medicine Zuotai could influence the expression of clock genes, which could contribute to pharmacological and/or toxicological effects of Zuotai.

Background. The circadian clock is involved in drug metabolism, efficacy and toxicity. Drugs could in turn affect the biological clock as a mechanism of their actions. Zuotai is an essential component of many popular Tibetan medicines for sedation, tranquil and "detoxification," and is mainly composed of metacinnabar (β-HgS). The pharmacological and/or toxicological basis of its action is unknown. This study aimed to examine the effect of Zuotai on biological clock gene expression in the liver of mice. Materials and methods. Mice were orally given Zuotai (10 mg/kg, 1.5-fold of clinical dose) daily for 7 days, and livers were collected every 4 h during the 24 h period. Total RNA was extracted and subjected to real-time RT-PCR analysis of circadian clock gene expression. Results. Zuotai decreased the oscillation amplitude of the clock core gene Clock, neuronal PAS domain protein 2 (Npas2), Brain and muscle Arnt-like protein-1 (Bmal1) at 10:00. For the clock feedback negative control genes, Zuotai had no effect on the oscillation of the clock gene Cryptochrome (Cry1) and Period genes (Per1-3). For the clock-driven target genes, Zuotai increased the oscillation amplitude of the PAR-bZip family member D-box-binding protein (Dbp), decreased nuclear factor interleukin 3 (Nfil3) at 10:00, but had no effect on thyrotroph embryonic factor (Tef); Zuotai increased the expression of nuclear receptor Rev-Erbα (Nr1d1) at 18:00, but had little influence on the nuclear receptor Rev-Erbβ (Nr1d2) and RORα. Conclusion. The Tibetan medicine Zuotai could influence the expression of clock genes, which could contribute to pharmacological and/or toxicological effects of Zuotai.

• TCM therapies showed potential positive effect for alleviating fatigue symptoms. • Whether TCM could improve the QOL of patients is still inconclusive. • We could not draw a firm conclusion about the safety of TCM on CFS.<br>Background: There is no curative treatment for chronic fatigue syndrome (CFS). Traditional Chinese medicine (TCM) is widely used in the treatment of CFS in China.<br>Objective: To evaluate the effectiveness and safety of TCM for CFS.<br>Methods: The protocol of this review is registered at PROSPERO. We searched six main databases for randomized clinical trials (RCTs) on TCM for CFS from their inception to September 2013. The Cochrane risk of bias tool was used to assess the methodological quality. We used RevMan 5.1 to synthesize the results.<br>Results: 23 RCTs involving 1776 participants were identified. The risk of bias of the included studies was high. The types of TCM interventions varied, including Chinese herbal medicine, acupuncture, qigong, moxibustion, and acupoint application. The results of meta-analyses and several individual studies showed that TCM alone or in combination with other interventions significantly alleviated fatigue symptoms as measured by Chalder's fatigue scale, fatigue severity scale, fatigue assessment instrument by Joseph E. Schwartz, Bell's fatigue scale, and guiding principle of clinical research on new drugs of TCM for fatigue symptom. There was no enough evidence that TCM could improve the quality of life for CFS patients. The included studies did not report serious adverse events.<br>Conclusions: TCM appears to be effective to alleviate the fatigue symptom for people with CFS. However, due to the high risk of bias of the included studies, larger, well-designed studies are needed to confirm the potential benefit in the future.

As a form of traditional, complementary, and alternative medicine (TCAM), traditional Tibetan medicine has developed into a mainstay of medical care in Tibet and has spread from there to China and then to the rest of the world. Thus far, research on traditional Tibetan medicine has focused on the study of the plant and animal sources of traditional medicines, study of the histology of those plants and animals, chemical analysis of traditional medicines, pharmacological study of those medicines, and evaluation of the clinical efficacy of those medicines. A number of papers on traditional Tibetan medicines have been published, providing some evidence of the efficacy of traditional Tibetan medicine. However, many traditional Tibetan medicines have unknown active ingredients, hampering the establishment of drug quality standards, the development of new medicines, commercial production of medicines, and market availability of those medicines. Traditional Tibetan medicine must take several steps to modernize and spread to the rest of the world: the pharmacodynamics of traditional Tibetan medicines need to be determined, the clinical efficacy of those medicines needs to be verified, criteria to evaluate the efficacy of those medicines need to be established in order to guide their clinical use, and efficacious medicines need to be acknowledged by the pharmaceutical market. The components of traditional Tibetan medicine should be studied, traditional Tibetan medicines should be screened for their active ingredients, and techniques should be devised to prepare and manufacture those medicines.

Jiuzhaigou National Park (JNP) is a site of global conservation significance. Conservation policies in JNP include the implementation of two national reforestation programs to increase forest cover and the exclusion of local land-use. We use archaeological excavation, ethnographic interviews, remote sensing and vegetation surveys to examine the implications of these policies for non-forest, montane meadows. We find that Amdo Tibetan people cultivated the valley for >2,000 years, creating and maintaining meadows through land clearing, burning and grazing. Meadows served as sites for gathering plants and mushrooms and over 40 % of contemporary species are ethnobotanically useful. Remote sensing analyses indicate a substantial (69.6 %) decline in meadow area between 1974 and 2004. Respondents report a loss of their “true history” and connections to the past associated with loss of meadows. Conservation policies intended to preserve biodiversity are unintentionally contributing to the loss of these ecologically and culturally significant meadow habitats.

Abstract Ethnopharmacological relevance Tibetan medicine has been practiced for 3800 years. Anzhijinhua San (AZJHS), which is a traditional Tibetan medicine, has been effective in the treatment of indigestion, anorexia and cold diarrhea. However, the effects of AZJHS on allergic diarrhea have not been reported. Aim of the study The aim of the present study was to elucidate the effect of AZJHS on experimental ovalbumin-induced diarrhea and elucidate its possible mechanism. Materials and methods Female BALB/c mice were sensitized by intraperitoneal injection with 50 μg ovalbumin (OVA) and 1 mg alum in saline twice during a 2-week period. From day 28, mice were orally challenged with OVA (50 mg) every other day for a total of ten times. AZJHS (46.8 and 468.0 mg/kg) was orally administered every other day from day 0–46. Food allergy symptoms were evaluated. OVA- specific IgE, 5-HT and its metabolites in serum were determined. Immunohistochemical and histopathology were performed in gastrointestinal tract tissues. 5-HT-related gene expression was assayed in the colon. Results Severe symptoms of allergic diarrhea were observed in the model group (diarrhea, anaphylactic response, and rectal temperature). AZJHS (46.8 and 468.0 mg/kg) significantly reduced mouse diarrhea and significantly prevented the increases in OVA-specific IgE levels (P < 0.05), which challenge with OVA. AZJHS (46.8 and 468.0 mg/kg) significantly prevented the increases in 5-HT-positive cells. The nuclei of EC cells in the AZJHS (46.8 and 468.0 mg/kg) group increased in size and the secretory granules were fewer in number compared with those in the model group. AZJHS (46.8 and 468.0 mg/kg) significantly increased the relative fold changes of 5-HTP and 5-HT compared with the model group. The mRNA expression of the serotonin transporter (Sert) and serotonin receptor 3A (Htr3a) was significantly decreased after the 10th challenge with OVA, and AZJHS (46.8 and 468.0 mg/kg) significantly increased these levels. Conclusions We demonstrated that the administration of AZJHS attenuated OVA-induced diarrhea by regulating the serotonin pathway. These results indicated that AZJHS may be a potential candidate as an anti-allergic diarrhea agent. Graphical abstract fx1 [ABSTRACT FROM AUTHOR]

PURPOSE We undertook a randomized controlled trial to assess the efficacy of group-based behavioral activation with mindfulness (BAM) for treating subthreshold depression in primary care in Hong Kong.METHODS We recruited adult patients aged 18 years or older with subthreshold depression from public primary care clinics and randomly assigned them to a BAM intervention group or a usual care group. The BAM group was provided with eight 2-hour weekly BAM sessions by trained allied health care workers. Patients in the usual care group received usual medical care with no additional psychological interventions. The primary outcome was depressive symptoms measured by the Beck Depression Inventory-II at 12 months. Secondary outcomes included incidence of major depressive disorder at 12 months. We assessed quality of life, activity and circumstances change, functional impairment, and anxiety at baseline, end of intervention, 5 months, and 12 months. RESULTS We randomly allocated 115 patients to the BAM intervention and 116 patients to usual care. At 12 months, compared with usual care peers, BAM patients had a slightly more favorable change in levels of depressive symptoms on the Beck Depression Inventory-II (between-group mean difference in score = −3.85; 95% CI, −6.36 to −1.34; Cohen d = −0.46, 95% CI, −0.76 to −0.16). Incidence of major depressive disorder was lower with BAM (10.8% vs 26.8%, P = .01), whereas groups did not differ significantly on other secondary outcomes at 12 months. CONCLUSIONS Group BAM appears to be efficacious for decreasing depressive symptoms and reducing the incidence of major depression among patients with subthreshold depression in primary care, although generalizability of our findings may be limited.

Hypoxia-induced pulmonary hypertension (HPH) is a severe condition associated with significant morbidity and mortality in people living at high altitude. Tsantan Sumtang, a traditional Tibetan medicine, has been routinely used for the treatment of cardiopyretic disease, as well as stenocardia. Interestingly, our previous research found that Tsantan Sumtang improved HPH in rats maintaining in a hypobaric chamber. We performed a series of experiments to test the indexes of vasoconstriction and vascular remodeling, the key pathophysiological characteristics of HPH. Our results showed that Tsantan Sumtang relaxed noradrenaline (NE)-precontracted rat pulmonary artery rings in a concentration-dependent manner in vitro. The PGI2-cAMP (prostaglandin I2-cyclic adenosine monophosphate) pathway, NO-cGMP (nitric oxide-cyclic guanosine monophosphate) pathway, and the opening of K+ channels (inward rectifier K+ channels, large conductance Ca2+-activated K+ channels, and voltage-dependent K+ channels) might play major roles in the vasorelaxation effect. In vivo, the administration of Tsantan Sumtang resulted in a substantial decrease in the rat mean pulmonary artery pressure (mPAP) and the right ventricular hypertrophy index (RVHI). The reduction of thickness of small pulmonary arterial wall and the WT% (the ratio of the vascular wall thickness to the vascular diameter) were observed. The smooth muscle muscularization of the arterials was alleviated by Tsantan Sumtang treatment at the same time. Tsantan Sumtang also reduced remodeling of pulmonary arterioles by suppressing the expression of proliferating cell nuclear antigen (PCNA), α-smooth muscle actin (α-SMA), cyclin D1, and cyclin-dependent kinase 4 (CDK4) through inhibition of p27Kip1 degradation. Therefore, Tsantan Sumtang could be applied as a preventative medication for HPH, which would be a new use for this traditional medicine. [ABSTRACT FROM AUTHOR]

Pages

  • Page
  • of 20