Skip to main content Skip to search
Displaying 51 - 56 of 56

Pages

  • Page
  • of 3
The objective of the present study is to research the herb of Swertia mussotii Franch and its different extracts by tristep infrared spectroscopy. The main constitute of Swertia mussotii Franch-gentiamarin, which is also the higher content constitute, was selected as the control components to analyze the infrared spectroscopy and second derivative infrared spectroscopy of different extracts of Swertia mussotii Franch, at the same time, the different concentration of ethanol extracts were also analyzed by two-dimensional correlation spectroscopy (2D-COS). The results indicated that the intensity of 1 611 and 1 075 cm(-1) of gentiamarin, which are its two main absorptions in the infrared spectra, has the positive correlation with the content change in different extracts. The infrared spectroscopy of extracts are similar if the polarity of extract solvents is close; with the decreases in solution polarity, the intensity of 2 853, 1 733, 1 464, 1 277 and 1 161 cm(-1) in infrared spectroscopy of different extracts is increased, the content of esters and the extraction percentage terpenoid compounds are also increased; the different concentration of ethanol extracts has obviously difference when they are analyzed by two-dimensional correlation spectroscopy (2D-COS). The positive correlation between the intensity of absorptions and the content of the gentiamarin indicates that the infrared spectroscopy can reflect the content change in constitute; the similar and the change trend of the different concentrations of ethanol extract infrared spectroscopy approve the scientificalness of decoction of traditional medicine; infrared spectroscopy that used in the research can be used as an accurate, rapid and effective method in the pharmacological activity tests of transitional herbal Swertia mussotii F. and it's different extracts, even in the research on the tibetan medicine.

BACKGROUND: Potentilla fruticosa, also called "Jinlaomei" and "Gesanghua", is widely used as folk herbs in traditional Tibetan medicine in China to treat inflammations, wounds, certain forms of cancer, diarrhoea, diabetes and other ailments. Previous research found P. fruticosa leaf extract (C-3) combined with Ginkgo biloba extracts (EGb) showed obvious synergistic effects in a variety of oxidation systems. The aim of the present study was to further confirm the synergy of P. fruticosa combined with EGb viewed from physiological bioavailability and explore the related bioactive mechanism behind the synergism.METHODS: The microbial test system (MTS) was adopted to evaluate the related bioactive mechanism. The synergistic effects were evaluated by isobolographic analysis. The H2O2 production rate and antioxidant enzyme (Catalase (CAT), Peroxidase (POD), Superoxide dismutase (SOD), Glutathione peroxidase (GSH-PX)) activities were determined by the colorimetric method. Enzyme gene (CAT, SOD) expression was measured by real time-PCR. RESULTS: The MTS antioxidant activity results showed the combination of C-3 + EGb exhibited synergistic effects especially at the ratio 5:1. Components of isorhamnetin and caffeic acid in C-3 and EGb displayed strong antioxidant activities on MTS and their combination also showed significant synergy in promoting H2O2 production. The combinations of C-3 + EGb and isorhamnetin + caffeic acid promoted CAT and SOD enzyme activities and the ratio 1:1 exhibited the strongest synergy while no obvious promotion on POD and GSH-PX enzyme activities was found. Both combinations above promoted gene expression of CAT and SOD enzymes and the ratio 1:1 exhibited the strongest synergy. CONCLUSIONS: Antioxidant activity results in MTS further confirmed the significant synergy of C-3 combined with EGb and isorhamnetin combined with caffeic acid. The synergy of C-3 combined with EGb may be attributed to the combination of isorhamnetin + caffeic acid, which promoted CAT and SOD enzyme gene expression and further promoted the enzyme activities in E. coli. This study could further provide rational basis for optimizing the physiological bioavailability of P. fruticosa by using natural and safe antioxidants in low doses to produce new medicines and functional products.

Khawa Karpo, in the eastern Himalayas, is a mountain considered sacred throughout Tibet, and is internationally recognized as a global biodiversity hotspot. Numerous areas within this landscape are considered ‘sacred’ by the indigenous Tibetans of the region, who interact with these sites in ways potentially beneficial to conservation. Our previous remote sensing study indicated that sacred sites are found in habitats with greater species richness, diversity, and endemism than randomly selected non-sacred sites. This study examines the role of sanctity in biodiversity conservation within habitats in the Khawa Karpo region by pairing plots within the same habitats in sacred and non-sacred areas. Understory richness, diversity, cover, and number of useful species are measured; for trees, richness, diversity, cover, and density are measured. Results indicate that within habitats sanctity does not affect understory plant communities; however, within sacred areas trees are larger (p = 0.003) and forests have greater cover (p = 0.003) than non-sacred areas. Our results indicate that, whereas placement of sacred areas and preservation of vegetation cover affects useful plants, biodiversity and endemism, within habitats sacred sites preserve old growth trees and forest structure. In sum, Tibetan sacred sites are ecologically unique and important for conservation on varying scales of landscape, community, and species.

This study was aimed to establish an UFLC fingerprint of Tibetan medicine Pterocephalus hookeir samples from different habitats. UFLC-PDA was adopted to analyse 21 batches of P. hookeir samples from different habitats. The chromatographic condition was as follow: Agilent proshell 120 SB-C18 column (4.6 mm x 100 mm, 2.7 microm) eluted with the mobile phases of acetonitrile and 0.2% phosphoric acid water in gradient mode. The flow rate was 1.0 mL x min(-1), and the detection wavelength was set at 238 nm. The fingerprints of 21 batches P. hookeir were carried out by similarity comparation, and 15 chromatographic peaks were extracted as the common peaks of fingerprint, of which 5 peaks were identified as chlorogenic acid, loganin, sweroside, sylvestroside III, triplostoside A. The similarity degrees of 18 batchs of samples were above 0.9, and the other 3 batchs of samples were below 0.9. This is the first established fingerprint of P. hookeir by using UFLC-PDA. This method has good precision, stability and repeatability that it could provide basis for quality control and evaluation of P. hookeir.

Nitrogen (N) status has a great impact on methane (CH4) consumption by soils. Modeling studies predicting soil CH4 consumption assume a linear relationship between CH4 uptake and N addition rate. Here, we present evidence that a nonlinear relationship may better characterize changes in soil CH4 uptake with increasing N additions. By conducting a field experiment with eight N-input levels in a Tibetan alpine steppe, we observed a unimodal relationship; CH4 uptake increased at low to medium N levels but declined at high N levels. Environmental and microbial properties jointly determined this response pattern. The generality of the unimodal trend was further validated by two independent analyses: (i) we examined soil CH4 uptake across at least five N-input levels in upland ecosystems across China. A unimodal CH4 uptake-N addition rate relationship was observed in 3 out of 4 cases; and (ii) we performed a meta-analysis to explore the N-induced changes in soil CH4 uptake with increasing N additions across global upland ecosystems. Results showed that the changes in CH4 uptake exhibited a quadratic correlation with N addition rate. Overall, we suggest that the unimodal relationship should be considered in biogeochemistry models for accurately predicting soil CH4 consumption under global N enrichment.

OBJECTIVE: To investigate the xanthones from Tibetan medicine Halenia elliptica and their antioxidant activity.METHODS: Column chromatography over normal phase silica gel, reversed phase silica gel, Sephadex LH-20, and recrystallization techniques were used to isolate and purify constituents from Halenia elliptica. Infrared spectrometry, mass spectrometry, and nuclear magnetic resonance spectrometry were used to identify the structure of compounds. The antioxidant activity was evaluated by measuring the content of malondialdehyde product in mice liver cell microsomal induced by ferrous-cysteine. RESULTS: Eight xanthones (compound I-VIII) were isolated and identified from the ethyl acetate extract of Halenia elliptica, among which 1,7-dihydroxy-2,3,5-trimethoxyxanthone was a novel compound. Compound I, III at 10 microg/ml and 100 microg/ml could inhibit the production of malondialdehyde in mouse liver microsomes in vitro. CONCLUSION: Eight xanthones were isolated and they have certain antioxidant activity.

Pages

  • Page
  • of 3