Skip to main content Skip to search
Displaying 51 - 65 of 65

Pages

  • Page
  • of 3
Liver fibrosis is a severe health problem, threatening the life quality and causing death, raising great concerns worldwide. Shi-Wei-Gan-Ning-Pill (SWGNP) is a traditional Tibetan recipe used to treat hepatic injuries; however, its hepatoprotective mechanism has not yet fully clarified. In this study, histological staining, biochemical assays, and elements determination were applied to evaluate the anti-fibrotic efficacy of SWGNP on a carbon tetrachloride (CCl4) induced hepato-fibrosis rat model. NMR-based metabolomics combined with orthogonal partial least squares-discriminant analysis (OPLS-DA), canonical regression analysis, and correlation networks analysis was used to characterize the potential biomarkers as well as metabolic pathways associated with the hepatoprotective activity of SWGNP. The results showed that SWGNP could significantly attenuate the pathological changes and decrease the levels of fibrosis markers (ColIV, HA, LN, and PCIII), and regulate the disordered elements distribution. Multivariate analysis and correlation network analysis revealed that SWGNP could protect rats against CCl4-induced liver fibrosis through anti-oxidation, repairing the impaired energy metabolisms and reversing the disturbed amino acids and nucleic acids metabolisms. In conclusion, this integrated metabolomics approach provided new insights into the mechanism of the hepatoprotective effect of SWGNP in liver fibrosis disease.

Liver fibrosis is a severe health problem, threatening the life quality and causing death, raising great concerns worldwide. Shi-Wei-Gan-Ning-Pill (SWGNP) is a traditional Tibetan recipe used to treat hepatic injuries; however, its hepatoprotective mechanism has not yet fully clarified. In this study, histological staining, biochemical assays, and elements determination were applied to evaluate the anti-fibrotic efficacy of SWGNP on a carbon tetrachloride (CCl4) induced hepato-fibrosis rat model. NMR-based metabolomics combined with orthogonal partial least squares-discriminant analysis (OPLS-DA), canonical regression analysis, and correlation networks analysis was used to characterize the potential biomarkers as well as metabolic pathways associated with the hepatoprotective activity of SWGNP. The results showed that SWGNP could significantly attenuate the pathological changes and decrease the levels of fibrosis markers (ColIV, HA, LN, and PCIII), and regulate the disordered elements distribution. Multivariate analysis and correlation network analysis revealed that SWGNP could protect rats against CCl4-induced liver fibrosis through anti-oxidation, repairing the impaired energy metabolisms and reversing the disturbed amino acids and nucleic acids metabolisms. In conclusion, this integrated metabolomics approach provided new insights into the mechanism of the hepatoprotective effect of SWGNP in liver fibrosis disease.

Traditional Tibetan medicine (TTM) plays an important role in the health care system of China. Little is known about the current evidence of TTM's clinical research in China. Randomized controlled trials (RCTs) of TTM therapies conducted in China were searched in PubMed, Cochrane Library, two major Chinese electronic databases, and two Tibetan medical journals from their inception to June 2014. Qualitative analysis and reporting quality assessment were performed. The protocol was registered in PROSPERO (No: CRD42013006881). A total of 227 RCTs involving 29,179 participants were included. They were heterogeneous in terms of study size, sites, treated conditions, interventions, measured outcomes, and quality. 103 diseases or symptoms were reported in the included trials. TTM interventions used in the RCTs consisted of drug treatments and non-drug treatments including bloodletting and moxibustion, in which Tibetan patent medications for oral use were tested in 175 studies and for external use in 47 studies. 93.8% (213/227) of the trials reported superior effect of TTM over control interventions. Only 7.9% (18/227) of the trials described details of random sequence generation, 3.5% (8/227) described details of blind. Clinical research in TTM in China covers whole medical systems. Data from RCTs showed that TTM might have potential benefit for the management of many diseases. Studies on definitive health outcomes could be systematically reviewed in order to provide more information on TTM's efficacy. More efforts should be made to improve the quality of RCTs in China and support TTM's further clinical applications.

This paper is in order to discussion with the composition and characteristics of Tibetan medicine plant resources, and promote the reasonable protection and utilization of the resources of Tibetan materia medica. Statistical analysis of species, distributions, and others of Chinese endemic seed plant from Tibetan medicine plants and usually used in the clinic of Tibetan medicine. The results showed that there are 523 species (25%) of Chinese endemic seed plant, belonging to 65 families and 162 genera, in about 2 000 varieties of Tibetan medicine plants recorded in relevant literatures. There are 180 Chinese endemic seed plant species (28%) belonging to 42 families and 72 genera from 625 medicine plants usually used in the clinic of Tibetan medicine. Specifically, the most of these Chinese endemic seed plant species are characteristic crude drug used in Tibetan medicine, and mainly or only distributed in Qinghai-Tibet Plateau. And a few species of them were intersected with traditional Chinese medicines (TCM) and other ethnic medicines. In addition, about 10% are listed in China Species Red List. The Qinghai-Tibet Plateau is the most abundant areas of Areal-types of the Chinese endemic seed plant. This is the biological and ecological reason formation the characteristics of Tibetan medicine plant resources. Therefore, strengthen the research of Chinese endemic seed plants used in Tibetan medicine is great significance for the reasonable protection and utilization of Tibetan medicine plant resources.

Two new compounds, deacetylisowortmins A (1) and B (2), were isolated from Talaromyces wortmannii LGT-4. Their structures were established by 1D and 2D NMR spectra, as well as comparison of the experimental and calculated electronic circular dichroism spectra. Monoamine oxidase and acetylcholinesterase inhibitory activities of 1 and 2 were also evaluated.

Two new compounds Talaromycin A (1) and Talaromycin B (2) were isolated from a liquid culture of Talaromyces aurantiacus. The structures of 1 and 2 were elucidated by IR, MS, 1D and 2D NMR spectra and comparison of the experimental and calculated electronic circular dichroism spectra. Additional known compounds (3-6) were also isolated. These compounds were tested for monoamine oxidase, acetylcholinesterase and PI3K inhibitory activity, but showed only weak activity.

Two new polyhydroxy polyacetylenes, herpecaudenes A and B (1 and 2), were isolated from the ethanol extract of fruits of Herpetospermum caudigerum, an important Tibetan medicine. The structures of them were elucidated on the basis of extensive spectroscopic methods including UV, IR, HRESIMS, 1H and 13C NMR, HMBC, HSQC, and 1H-1H COSY. Compound 2 showed significant inhibitory effects on NO production in LPS-activated RAW 264.7 macrophages with IC50 values of 7.05 ± 1.59 µM.

Objective: To clarity the original plants and the main application varieties of White Flos Gentianae.; Method: Herbal textual research, wild specimen collection, investigation and collection of the samples from Tibetan hospital, Tibetan pharmaceutical factory and medical material market were carried out simultaneously to identify the original plants of White Flos Gentianae.; Result: The results of varieties textual research and specimen identification showed that Gentiana szechenyii, G. purdomii and G. algida were in accord with the record of Tibetan herbal textual The three species above were the original plants of White Flos Gentianae. The identification of 20 batches samples showed that G. szechenyii was the main application variety. The other varieties were only used in Tibetan hospitals. All the samples above were flowering branches.; Conclusion: It was necessary to strengthen the research on variety systematization of White Flos Gentianae make a further discussion on the taxonomy position of G. purdomii, G. algida and the white flos population. Its was also nessary to establish and improve the quality standard of different variety based on the principle of "one species, one name". The quality specification of White Flos Gentianae should be established and improved to standard clinical utilization and produce feeding. More study of resources investigation and cultivation of G. szechenyii should be carried on to meet the demand of produce and clinic.;

"Bangjian" were traditional Tibetan medicine-flowers from Gentianaceae, which were widely used and had a long medicinal history for the function of detoxifying, curing heat symptoms and treating the laryngitis. The Tibetan compound preparation endowed SFDA approval number always used Bangjian aas the main raw materials for relieving cough, asthma and treating respiratory diseases such as acute and chronic bronchitis. Its commodity medicinal materials were also sold in Qinghai, Sichuan, Tibet and other local medicinal materials market and local specialty marke. However, when recorded by literatures of Tibetan medicine, Bangjian were often classified into white, blue and black or white, blue and variegated according to color of flowers, leading to disordered varieties. In this paper, different Bangjian including their original plants and the main application varieties were studied and authenticated by textual research, wild specimen collection, investigation and collection of samples from Tibetan hospitals,Tibetan pharmaceutical factories and medical material markets. Results showed that Bangjian-including blue, black and variegated flowers were originated from 14 species and 3 varietas according to literatures, and the main application varieties mainly come from Ser. Ornatae of Sect. Monopodiae, such as Gentiana veitchiorum for the most, G. sino-ornata as well as G. lawrencei var. farreri. Suggestion about establishing the quality standard of Bangjian was gived, which provided reference in reasonable use and scientific research for Bangjian, and also had practical value for its clinical use and development.

Zuotais regarded as the king of Tibetan medicine. However, the major starting material ofZuotais mercury, which is one very toxic heavy metal. This has aroused serious doubts on the biosafety ofZuotacontaining drugs. In this study, we quantified the Hg contents in fourZuotasamples, monitored the release of Hg in simulated gastric/intestinal juice and evaluated their cytotoxicity to Caco-2 cells. Our results showed that the Hg contents inZuotasamples were in the range of 566–676 mg/g. Fortunately, the release of Hg fromZuotasamples was very low in simulated gastric juice, and much lower in simulated intestinal juice. Direct contact ofZuotawith Caco-2 cells led to dose-dependent cytotoxicity, including activity loss and membrane leakage. The toxicity was closely related to apoptosis, because the caspase 3/7 levels of Caco-2 cells increased after the exposure toZuota. Interestingly,Zuotasamples inhibited the oxidative stress at low concentrations, but the toxicity could be relived by antioxidants. The possible toxicity should be attributed to the cellular uptake ofZuotaparticulates. Beyond the cytotoxicity, significant differences amongZuotasamples from different institutions were observed, suggesting that the preparation process ofZuotahad meaningful influence of its biosafety. The implications to the safety and clinical applications ofZuotaare discussed. [ABSTRACT FROM AUTHOR]

BACKGROUND: Soft tissue injury imposes major public health burdens worldwide. The positive effect of China's Tibetan medicine and the Lamiophlomis rotata-based herbal Pain Relieving Plaster (PRP) on healing closed soft tissue injury (CSTI) has been reported. The herbs contained in Plaster are also referred as 'blood-activating and stasis-dispelling' in herbal medicine. The formula of the plaster contains four China's Tibetan medical herbs, including Lamiophlomis rotata, Oxytropis falcate Bunge, Curcuma longa Linn, and Myricaria bracteata. Two of these herbs (Lamiophlomis rotate; Curcuma longa Linn) are commonly used in different formulae of Chinese medicine. The objective of this study is to use an interdisciplinary approach to test the hypothesis that the formula and its components influence the process of CSTI.METHODS: In vivo models have been established in 30 rabbit ear pinnae and studied for: (1) blood flow velocity (BFV) which was affected by pressure of 21.2 kg/cm2 for 30 second over the local rabbit ear tissue; (2) edema formation of the closed soft tissue injury; (3) in vivo local temperature change. RESULTS: The results of in vivo studies indicated that CSTI significantly increased the velocity of blood flow and increased edema formation within the control group. The PRP extracts for 5 hours significantly slowed down the BFV of CSTI in rabbit ears, markedly decreased the elevated edema level from the 3rd to the 5th day. CONCLUSION: The ingredients contained in the formula have positive effects in healing CSTI and further study is worth exploring.

BACKGROUND: Soft tissue injury imposes major public health burdens worldwide. The positive effect of China's Tibetan medicine and the Lamiophlomis rotata-based herbal Pain Relieving Plaster (PRP) on healing closed soft tissue injury (CSTI) has been reported. The herbs contained in Plaster are also referred as 'blood-activating and stasis-dispelling' in herbal medicine. The formula of the plaster contains four China's Tibetan medical herbs, including Lamiophlomis rotata, Oxytropis falcate Bunge, Curcuma longa Linn, and Myricaria bracteata. Two of these herbs (Lamiophlomis rotate; Curcuma longa Linn) are commonly used in different formulae of Chinese medicine. The objective of this study is to use an interdisciplinary approach to test the hypothesis that the formula and its components influence the process of CSTI. METHODS: In vivo models have been established in 30 rabbit ear pinnae and studied for: (1) blood flow velocity (BFV) which was affected by pressure of 21.2 kg/cm2 for 30 second over the local rabbit ear tissue; (2) edema formation of the closed soft tissue injury; (3) in vivo local temperature change. RESULTS: The results of in vivo studies indicated that CSTI significantly increased the velocity of blood flow and increased edema formation within the control group. The PRP extracts for 5 hours significantly slowed down the BFV of CSTI in rabbit ears, markedly decreased the elevated edema level from the 3rd to the 5th day. CONCLUSION: The ingredients contained in the formula have positive effects in healing CSTI and further study is worth exploring.

"The ancient art of Tibetan medicine is a veritable treasure in the world annals of medical science. Tibetan medicine evolved over ages, as the Tibetan people accumulated experience struggling against the conditions of the snow plateau, emerging as a unique realm of medicine with a distinct understanding of physiology and pathology and its own methods of diagnosis, treatment and medication. The abundant medicinal herbs that grow on the plateau are the active ingredients in the special medicines Tibetans use to treat patients, which in turn is a precious cultural legacy that is now being passed on to the world. Known for its traditional therapies, Tibetan medicine is remarkably effective and beneficial, and has made great contributions to the overall health of humankind"--Container.

Pages

  • Page
  • of 3