Practitioners understand "meditation," or mental training, to be a process of familiarization with one's own mental life leading to long-lasting changes in cognition and emotion. Little is known about this process and its impact on the brain. Here we find that long-term Buddhist practitioners self-induce sustained electroencephalographic high-amplitude gamma-band oscillations and phase-synchrony during meditation. These electroencephalogram patterns differ from those of controls, in particular over lateral frontoparietal electrodes. In addition, the ratio of gamma-band activity (25-42 Hz) to slow oscillatory activity (4-13 Hz) is initially higher in the resting baseline before meditation for the practitioners than the controls over medial frontoparietal electrodes. This difference increases sharply during meditation over most of the scalp electrodes and remains higher than the initial baseline in the postmeditation baseline. These data suggest that mental training involves temporal integrative mechanisms and may induce short-term and long-term neural changes.
Zotero Collections:
Practitioners understand “meditation,” or mental training, to be a process of familiarization with one's own mental life leading to long-lasting changes in cognition and emotion. Little is known about this process and its impact on the brain. Here we find that long-term Buddhist practitioners self-induce sustained electroencephalographic high-amplitude gamma-band oscillations and phase-synchrony during meditation. These electroencephalogram patterns differ from those of controls, in particular over lateral frontoparietal electrodes. In addition, the ratio of gamma-band activity (25-42 Hz) to slow oscillatory activity (4-13 Hz) is initially higher in the resting baseline before meditation for the practitioners than the controls over medial frontoparietal electrodes. This difference increases sharply during meditation over most of the scalp electrodes and remains higher than the initial baseline in the postmeditation baseline. These data suggest that mental training involves temporal integrative mechanisms and may induce short-term and long-term neural changes.
Zotero Collections:
Humans show consistent differences in the extent to which their behavior reflects a bias toward appetitive approach-related behavior or avoidance of aversive stimuli [Elliot, A. J. Approach and avoidance motivation. In A. J. Elliot (Ed.), Handbook of approach and avoidance motivation (pp. 3-14). New York: Psychology Press, 2008]. We examined the hypothesis that in healthy participants this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding, we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward versus punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition.
Zotero Collections:
<p>A long-standing problem in stress research has been that individuals' reports of their tendencies to become anxious are often inconsistent with relevant behavioral and physiological indices. This study investigated the distinction between (a) truly low-anxious Ss, who report low trait anxiety on the Taylor Manifest Anxiety Scale and low defensiveness on the Marlowe-Crowne Social Desirability Scale, and (b) repressors, who report low anxiety but high defensiveness. These groups were compared with a moderately high-anxious one. Heart rate, spontaneous skin resistance responses, and forehead muscle tension were recorded from 40 male college students during a phrase association task. Significant differences in the 3 physiological measures as well as in 3 behavioral ones (reaction time, content avoidance, and verbal interference) all indicated that the repressors were more stressed than the low-anxious Ss despite their claims of lower trait anxiety. The high-anxious group exhibited a 3rd pattern suggesting an intermediate level of anxious responding. These data document the need to distinguish between repressors and truly low-anxious persons in research concerned with relations between self-reported anxiety and behavioral and physiological responses to stress. (42 ref)</p>
Zotero Collections:
Despite the vast literature that has implicated asymmetric activation of the prefrontal cortex in approach-withdrawal motivation and emotion, no published reports have directly explored the neural correlates of well-being. Eighty-four right-handed adults (ages 57-60) completed self-report measures of eudaimonic well-being, hedonic well-being, and positive affect prior to resting electroencephalography. As hypothesized, greater left than right superior frontal activation was associated with higher levels of both forms of well-being. Hemisphere-specific analyses documented the importance of goal-directed approach tendencies beyond those captured by approach-related positive affect for eudaimonic but not for hedonic well-being. Appropriately engaging sources of appetitive motivation, characteristic of higher left than right baseline levels of prefrontal activation, may encourage the experience of well-being.
Zotero Collections:
General linear modeling (GLM) is one of the most commonly used approaches to perform voxel based analyses (VBA) for hypotheses testing in neuroimaging. In this paper we tie support vector machine based regression (SVR) and classical significance testing to provide the benefits of max margin estimation in the GLM setting. Using Welch-Satterthwaite approximations, we compute degrees of freedom (df) of error (also known as residual df) for ε-SVR. We demonstrate that ε-SVR can result not only in robustness of estimation but also improved residual df compared to the very commonly used ordinary least squares (OLS) estimation. This can result in higher sensitivity to signal in neuroimaging studies and also allow for better control of confounding effects of nuisance covariates. We demonstrate the application of our approach in white matter analyses using diffusion tensor imaging (DTI) data from autism and emotion-regulation studies.
Zotero Collections:
Intensive training in Vipassana meditation enhances one's ability to allocate attention efficiently in order to detect visual targets accurately. Behavioral and event-related potential evidence for a causal link between behavioral training and brain plasticity in adults is shown.
Zotero Collections:
- Classical Buddhist Contemplation Practices,
- Buddhist Contemplation by Applied Subject,
- Contemplation by Applied Subject,
- Contemplation by Tradition,
- Neuroscience and Buddhist Contemplation,
- Science and Buddhist Contemplation,
- Neuroscience and Contemplation,
- Practices of Buddhist Contemplation,
- Insight (vipashyana, lhaktong),
- Science and Contemplation,
- Buddhist Contemplation
Intensive training in Vipassana meditation enhances one's ability to allocate attention efficiently in order to detect visual targets accurately. Behavioral and event-related potential evidence for a causal link between behavioral training and brain plasticity in adults is shown.
Zotero Collections:
The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.
Zotero Collections:
The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.
Zotero Collections:
Although the adult brain was once seen as a rather static organ, it is now clear that the organization of brain circuitry is constantly changing as a function of experience or learning. Yet, research also shows that learning is often specific to the trained stimuli and task, and does not improve performance on novel tasks, even very similar ones. This perspective examines the idea that systematic mental training, as cultivated by meditation, can induce learning that is not stimulus or task specific, but process specific. Many meditation practices are explicitly designed to enhance specific, well-defined core cognitive processes. We will argue that this focus on enhancing core cognitive processes, as well as several general characteristics of meditation regimens, may specifically foster process-specific learning. To this end, we first define meditation and discuss key findings from recent neuroimaging studies of meditation. We then identify several characteristics of specific meditation training regimes that may determine process-specific learning. These characteristics include ongoing variability in stimulus input, the meta-cognitive nature of the processes trained, task difficulty, the focus on maintaining an optimal level of arousal, and the duration of training. Lastly, we discuss the methodological challenges that researchers face when attempting to control or characterize the multiple factors that may underlie meditation training effects.
Zotero Collections:
<p>Although the adult brain was once seen as a rather static organ, it is now clear that the organization of brain circuitry is constantly changing as a function of experience or learning. Yet, research also shows that learning is often specific to the trained stimuli and task, and does not improve performance on novel tasks, even very similar ones. This perspective examines the idea that systematic mental training, as cultivated by meditation, can induce learning that is not stimulus or task specific, but process specific. Many meditation practices are explicitly designed to enhance specific, well-defined core cognitive processes. We will argue that this focus on enhancing core cognitive processes, as well as several general characteristics of meditation regimens, may specifically foster process-specific learning. To this end, we first define meditation and discuss key findings from recent neuroimaging studies of meditation. We then identify several characteristics of specific meditation training regimes that may determine process-specific learning. These characteristics include ongoing variability in stimulus input, the meta-cognitive nature of the processes trained, task difficulty, the focus on maintaining an optimal level of arousal, and the duration of training. Lastly, we discuss the methodological challenges that researchers face when attempting to control or characterize the multiple factors that may underlie meditation training effects.</p>
Zotero Collections:
Despite the crucial role of teachers in fostering children's academic learning and social-emotional well-being, addressing teacher stress in the classroom remains a significant challenge in education. The present study reports results from a randomized controlled pilot trial of a modified Mindfulness-Based Stress Reduction course (mMBSR) adapted specifically for teachers. Results suggest the course may be a promising intervention, with participants showing significant reductions in psychological symptoms and burnout, improvements in observer-rated classroom organization and performance on a computer task of affective attentional bias, and increases in self-compassion. In contrast, control group participants showed declines in cortisol functioning over time and marginally significant increases in burnout. Furthermore, changes in mindfulness were correlated in the expected direction with changes across several outcomes (psychological symptoms, burnout, sustained attention) in the intervention group. Implications of these findings for the training and support of teachers are discussed.
Zotero Collections:
<p>Draws on studies with leading neuroscience researchers and the Dalai Lama to examine the health benefits of meditation, in a transcript of a scientific conference at Washington, D.C.'s Mind and Life Institute that explores the mind's capacity for influencing physical disease.</p>
Zotero Collections:
Lesion and neuroimaging studies suggest the amygdala is important in the perception and production of negative emotion; however, the effects of emotion regulation on the amygdalar response to negative stimuli remain unknown. Using event-related fMRI, we tested the hypothesis that voluntary modulation of negative emotion is associated with changes in neural activity within the amygdala. Negative and neutral pictures were presented with instructions to either "maintain" the emotional response or "passively view" the picture without regulating the emotion. Each picture presentation was followed by a delay, after which subjects indicated how they currently felt via a response keypad. Consistent with previous reports, greater signal change was observed in the amygdala during the presentation of negative compared to neutral pictures. No significant effect of instruction was found during the picture presentation component of the trial. However, a prolonged increase in signal change was observed in the amygdala when subjects maintained the negative emotional response during the delay following negative picture offset. This increase in amygdalar signal due to the active maintenance of negative emotion was significantly correlated with subjects' self-reported dispositional levels of negative affect. These results suggest that consciously evoked cognitive mechanisms that alter the emotional response of the subject operate, at least in part, by altering the degree of neural activity within the amygdala.
Zotero Collections:
The impact of using motion estimates as covariates of no interest was examined in general linear modeling (GLM) of both block design and rapid event-related functional magnetic resonance imaging (fMRI) data. The purpose of motion correction is to identify and eliminate artifacts caused by task-correlated motion while maximizing sensitivity to true activations. To optimize this process, a combination of motion correction approaches was applied to data from 33 subjects performing both a block-design and an event-related fMRI experiment, including analysis: (1) without motion correction; (2) with motion correction alone; (3) with motion-corrected data and motion covariates included in the GLM; and (4) with non-motion-corrected data and motion covariates included in the GLM. Inclusion of covariates was found to be generally useful for increasing the sensitivity of GLM results in the analysis of event-related data. When motion parameters were included in the GLM for event-related data, it made little difference if motion correction was actually applied to the data. For the block design, inclusion of motion covariates had a deleterious impact on GLM sensitivity when even moderate correlation existed between motion and the experimental design. Based on these results, we present a general strategy for block designs, event-related designs, and hybrid designs to identify and eliminate probable motion artifacts while maximizing sensitivity to true activations.
Zotero Collections:
Abstract. Although the voxel-based morphometry (VBM) has been widely used in quantifying the amount of gray matter of the human brain, the optimal amount of registration that should be used in VBM has not been addressed. In this paper, we present a novel multi-scale VBM using the weighted spherical harmonic (SPHARM) representation to address the issue. The weighted-SPHARM provides the explicit smooth functional representation of a true unknown cortical boundary. Based on this new representation, the gray matter tissue density is constructed using the Euclidean distance map from a voxel to the estimated smooth cortical boundary. The methodology is applied in localizing abnormal cortical regions in a group of autistic subjects. 1
Zotero Collections:
<p>Recent studies have shown that the presence of a caring relational partner can attenuate neural responses to threat. Here we report reanalyzed data from Coan, Schaefer, and Davidson ( 2006 ), investigating the role of relational mutuality in the neural response to threat. Mutuality reflects the degree to which couple members show mutual interest in the sharing of internal feelings, thoughts, aspirations, and joys - a vital form of responsiveness in attachment relationships. We predicted that wives who were high (versus low) in perceived mutuality, and who attended the study session with their husbands, would show reduced neural threat reactivity in response to mild electric shocks. We also explored whether this effect would depend on physical contact (hand-holding). As predicted, we observed that higher mutuality scores corresponded with decreased neural threat responding in the right dorsolateral prefrontal cortex and supplementary motor cortex. These effects were independent of hand-holding condition. These findings suggest that higher perceived mutuality corresponds with decreased self-regulatory effort and attenuated preparatory motor activity in response to threat cues, even in the absence of direct physical contact with social resources.</p>
Zotero Collections:
The medial prefrontal cortex (mPFC), hippocampus, and amygdala are implicated in the regulation of affect and physiological processes, including hypothalamic-pituitary-adrenal (HPA) axis function. Anhedonia is likely associated with dysregulation of these processes. Dense-array resting electroencephalographic and cortisol were obtained from healthy and anhedonic groups. Low-resolution electromagnetic tomography was used to compute intracerebral current density. For the control group, voxelwise analyses found a relationship between current density in beta and gamma bands and steeper cortisol slope (indicative of more adaptive HPA axis functioning) in regions of the hippocampus, parahippocampal gyrus, and mPFC. For the anhedonic group, the mPFC finding was absent. Anhedonia may be characterized by disruptions of mPFC-mediated neuroendocrine regulation, which could constitute a vulnerability to the development of stress-related disorders.
Zotero Collections:
A review of behavioral and neurobiological data on mood and mood regulation as they pertain to an understanding of mood disorders is presented. Four approaches are considered: 1) behavioral and cognitive; 2) neurobiological; 3) computational; and 4) developmental. Within each of these four sections, we summarize the current status of the field and present our vision for the future, including particular challenges and opportunities. We conclude with a series of specific recommendations for National Institute of Mental Health priorities. Recommendations are presented for the behavioral domain, the neural domain, the domain of behavioral-neural interaction, for training, and for dissemination. It is in the domain of behavioral-neural interaction, in particular, that new research is required that brings together traditions that have developed relatively independently. Training interdisciplinary clinical scientists who meaningfully draw upon both behavioral and neuroscientific literatures and methods is critically required for the realization of these goals.
Zotero Collections:
Anxiety is a debilitating symptom of many psychiatric disorders including generalized anxiety disorder, mood disorders, schizophrenia, and autism. Anxiety involves changes in both central and peripheral biology, yet extant functional imaging studies have focused exclusively on the brain. Here we show, using functional brain and cardiac imaging in sequential brain and cardiac magnetic resonance imaging (MRI) sessions in response to cues that predict either threat (a possible shock) or safety (no possibility of shock), that MR signal change in the amygdala and the prefrontal and insula cortices predicts cardiac contractility to the threat of shock. Participants with greater MR signal change in these regions show increased cardiac contractility to the threat versus safety condition, a measure of the sympathetic nervous system contribution to the myocardium. These findings demonstrate robust neural-cardiac coupling during induced anxiety and indicate that individuals with greater activation in brain regions identified with aversive emotion show larger magnitude cardiac contractility increases to threat.
Zotero Collections:
This article reviews the modern literature on two key aspects of the central circuitry of emotion - the prefrontal cortex (PFC) and the amygdala. There are several different functional divisions of the PFC including the dorsolateral, ventromedial and orbitofrontal sectors. Each of these regions plays some role in affective processing that shares the feature of representing affect in the absence of immediate rewards and punishments as well as in different aspects of emotional regulation. The amygdala appears to be crucial for the learning of new stimulus-threat contingencies and also appears to be important in the expression of cue-specific fear. Individual differences in both tonic activation and phasic reactivity in this circuit play an important role in governing affective style. Emphasis is placed upon affective chronometry, or the time course of emotional responding, as a key attribute of emotion that varies across individuals and is regulated by this circuitry.
Zotero Collections:
Asthma, like many inflammatory disorders, is affected by psychological stress, suggesting that reciprocal modulation may occur between peripheral factors regulating inflammation and central neural circuitry underlying emotion and stress reactivity. Despite suggestions that emotional factors may modulate processes of inflammation in asthma and, conversely, that peripheral inflammatory signals influence the brain, the neural circuitry involved remains elusive. Here we show, using functional magnetic resonance imaging, that activity in the anterior cingulate cortex and insula to asthma-relevant emotional, compared with valence-neutral stimuli, is associated with markers of inflammation and airway obstruction in asthmatic subjects exposed to antigen. This activation accounts for > or =40% of the variance in the peripheral markers and suggests a neural basis for emotion-induced modulation of airway disease in asthma. The anterior cingulate cortex and insula have been implicated in the affective evaluation of sensory stimulation, regulation of homeostatic responses, and visceral perception. In individuals with asthma and other stress-related conditions, these brain regions may be hyperresponsive to disease-specific emotional and afferent physiological signals, which may contribute to the dysregulation of peripheral processes, such as inflammation.
Zotero Collections:
Background
The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2.
Methodology/Principal Findings
The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception.
Conclusions/Significance
These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.
Zotero Collections:
Children with an anxious temperament (AT) are at risk for developing psychiatric disorders along the internalizing spectrum, including anxiety and depression. Like these disorders, AT is a multidimensional phenotype and children with extreme anxiety show varying mixtures of physiological, behavioral, and other symptoms. Using a well-validated juvenile monkey model of AT, we addressed the degree to which this phenotypic heterogeneity reflects fundamental differences or similarities in the underlying neurobiology. The rhesus macaque is optimal for studying AT because children and young monkeys express the anxious phenotype in similar ways and have similar neurobiology. Fluorodeoxyglucose (FDG)-positron emission tomography (FDG-PET) in 238 freely behaving monkeys identified brain regions where metabolism predicted variation in three dimensions of the AT phenotype: hypothalamic-pituitary-adrenal (HPA) activity, freezing behavior, and expressive vocalizations. We distinguished brain regions that predicted all three dimensions of the phenotype from those that selectively predicted a single dimension. Elevated activity in the central nucleus of the amygdala and the anterior hippocampus was consistently found across individuals with different presentations of AT. In contrast, elevated activity in the lateral anterior hippocampus was selective to individuals with high levels of HPA activity, and decreased activity in the motor cortex (M1) was selective to those with high levels of freezing behavior. Furthermore, activity in these phenotype-selective regions mediated relations between amygdala metabolism and different expressions of anxiety. These findings provide a framework for understanding the mechanisms that lead to heterogeneity in the clinical presentation of internalizing disorders and set the stage for developing improved interventions.
Zotero Collections:
Pages |