Displaying 1 - 2 of 2
Significant progress has been made in our understanding of the neural substrates of emotion and its disorders. Neuroimaging methods have been used to characterize the circuitry underlying disorders of emotion. Particular emphasis has been placed on the prefrontal cortex, anterior cingulate, parietal cortex, and the amygdala as critical components of the circuitry that may be dysfunctional in both depression and anxiety.
Electroencephalogram (EEG) alpha power has been demonstrated to be inversely related to mental activity and has subsequently been used as an indirect measure of brain activation. The thalamus has been proposed as an important site for modulation of rhythmic alpha activity. Studies in animals have suggested that cortical alpha rhythms are correlated with alpha rhythms in the thalamus. However, little empirical evidence exists for this relation in humans. In the current study, resting EEG and a fluorodeoxyglucose positron emission tomography scan were measured during the same experimental session. Over a 30-min period, average EEG alpha power across 28 electrodes from 27 participants was robustly inversely correlated with glucose metabolic activity in the thalamus. These data provide the first evidence for a relation between alpha EEG power and thalamic activity in humans.