Skip to main content Skip to search
Displaying 1 - 2 of 2
STUDY DESIGN: This study determined bone mineral density (BMD) of cervical, thoracic, and lumbar vertebrae in healthy asymptomatic human subjects. OBJECTIVES: To test the hypothesis that BMD of neck vertebrae (C2-C7) is equivalent to BMD of lumbar vertebrae (L2-L4). SUMMARY OF BACKGROUND DATA: BMD of lumbar vertebrae is correlated to their strength. Although numerous studies exist quantifying BMD of the human lumbar spine, such information for the cervical spine is extremely limited. In addition, BMD correlations are not established between the two regions of the spinal column. METHODS: Adult healthy human female volunteers with ages ranging from 18 to 40 years underwent quantitative computed tomography (CT) scanning of the neck and back. All BMD data were statistically analyzed using paired nonrepeating measures ANOVA techniques. Significance was assigned at a P < 0.05. Linear regression analyses were used to compare BMD as a function of level and region; +/-95% confidence intervals were determined. RESULTS: When data were grouped by cervical (C2-C7), thoracic (T1), and lumbar (L2-L4) spines, mean BMD was 260.8 +/- 42.5, 206.9 +/- 33.5, and 179.7 +/- 23.4 mg/mL. Average BMD of cervical vertebrae was higher than (P < 0.0001) thoracic and lumbar spines. Correlations between BMD and level indicated the lowest r value for T1 (0.42); in general, the association was the strongest in the lumbar spine (r = 0.89-0.95). The cervical spine also responded with good correlations among cervical vertebrae (r ranging from 0.66 to 0.87). CONCLUSIONS: The present study failed to support the hypothesis that BMD of lumbar spine vertebrae is equivalent to its cranial counterparts. The lack of differences in BMD among the three lumbar vertebral bodies confirms the appropriateness of using L2, L3, or L4 in clinical or biomechanical situations. However, significant differences were found among different regions of the vertebral column, with the cervical spine demonstrating higher trabecular densities than the thoracic and lumbar spines. In addition, the present study found statistically significant variations in densities even among neck vertebrae.

The objective of this study was to determine the bone mineral density (BMD) of cervical vertebrae and correlate with the lumbar spine. Fifty-seven young adult healthy male volunteers, ranging from 18 to 41 years of age, underwent quantitative computed tomography (QCT) scanning of C2-T1 and L2-L4 vertebrae. To account for correlations, repeated measures techniques were used to compare data as a function of spinal level and region. Linear regression methods were used (+/-95% CI) to compare data as a function of spinal level and region. The mean age and body height were 25.0 +/- 5.8 years and 181.0 +/- 7.6 cm. BMD decreased from the rostral to caudal direction along the spinal column. Grouped data indicated that the neck is the densest followed by the first thoracic vertebra and low back with mean BMD of 256.0 +/- 48.1, 194.3 +/- 44.2, and 172.2 +/- 28.4 mg/cm(3), respectively; differences were statistically significant. While BMD did not vary significantly between the three lumbar bodies, neck vertebrae demonstrated significant trends. The matrix of correlation coefficients between BMD and spinal level indicated that the relationship is strong in the lumbar (r = 0.92-0.96) and cervical (r = 0.73-0.92) spines. Data from the present study show that the trabecular bony architecture of the neck is significantly different from the low back. These quantitative BMD data from a controlled young adult healthy human male volunteer population may be valuable in establishing normative data specifically for the neck. From a trabecular bone density perspective, these results indicate that lumbar vertebrae cannot act as the best surrogates for neck vertebrae. Significant variations in densities among neck vertebrae, unlike the low back counterpart, may underscore the need to treat these bones as different structures.