Displaying 1 - 9 of 9
<p>The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing.Humans are causing a massive animal extinction without precedent in 65 million years. Humans are causing a massive animal extinction without precedent in 65 million years.</p>
A recently published analysis by Lewis and Maslin (Lewis SL and Maslin MA (2015) Defining the Anthropocene. Nature 519: 171–180) has identified two new potential horizons for the Holocene−Anthropocene boundary: 1610 (associated with European colonization of the Americas), or 1964 (the peak of the excess radiocarbon signal arising from atom bomb tests). We discuss both of these novel suggestions, and consider that there is insufficient stratigraphic basis for the former, whereas placing the latter at the peak of the signal rather than at its inception does not follow normal stratigraphical practice. Wherever the boundary is eventually placed, it should be optimized to reflect stratigraphical evidence with the least possible ambiguity.
The rise of plastics since the mid-20th century, both as a material element of modern life and as a growing environmental pollutant, has been widely described. Their distribution in both the terrestrial and marine realms suggests that they are a key geological indicator of the Anthropocene, as a distinctive stratal component. Most immediately evident in terrestrial deposits, they are clearly becoming widespread in marine sedimentary deposits in both shallow- and deep-water settings. They are abundant and widespread as macroscopic fragments and virtually ubiquitous as microplastic particles; these are dispersed by both physical and biological processes, not least via the food chain and the ‘faecal express’ route from surface to sea floor. Plastics are already widely dispersed in sedimentary deposits, and their amount seems likely to grow several-fold over the next few decades. They will continue to be input into the sedimentary cycle over coming millennia as temporary stores – landfill sites – are eroded. Plastics already enable fine time resolution within Anthropocene deposits via the development of their different types and via the artefacts (‘technofossils’) they are moulded into, and many of these may have long-term preservation potential when buried in strata.
Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.
In 2006, one of the hottest years on record, a “pizzly” was discovered near the top of the world. Half polar bear, half grizzly, this never-before-seen animal might be dismissed as a fluke of nature. Anthony Barnosky instead sees it as a harbinger of things to come.In Heatstroke, the renowned paleoecologist shows how global warming is fundamentally changing the natural world and its creatures. While melting ice may have helped produce the pizzly, climate change is more likely to wipe out species than to create them. Plants and animals that have followed the same rhythms for millennia are suddenly being confronted with a world they’re unprepared for—and adaptation usually isn’t an option.
This is not the first time climate change has dramatically transformed Earth. Barnosky draws connections between the coming centuries and the end of the last ice age, when mass extinctions swept the planet. The differences now are that climate change is faster and hotter than past changes, and for the first time humanity is driving it. Which means this time we can work to stop it.
No one knows exactly what nature will come to look like in this new age of global warming. But Heatstroke gives us a haunting portrait of what we stand to lose and the vitality of what can be saved.
Earth's most recent major extinction episode, the Quaternary Megafauna Extinction, claimed two-thirds of mammal genera and one-half of species that weighed >44 kg between ≈50,000 and 3,000 years ago. Estimates of megafauna biomass (including humans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched the loss of non-human megafauna biomass until ≈12,000 years ago. Then, total megafauna biomass crashed, because many non-human megafauna species suddenly disappeared, whereas human biomass continued to rise. After the crash, the global ecosystem gradually recovered into a new state where megafauna biomass was concentrated around one species, humans, instead of being distributed across many species. Precrash biomass levels were finally reached just before the Industrial Revolution began, then skyrocketed above the precrash baseline as humans augmented the energy available to the global ecosystem by mining fossil fuels. Implications include (i) an increase in human biomass (with attendant hunting and other impacts) intersected with climate change to cause the Quaternary Megafauna Extinction and an ecological threshold event, after which humans became dominant in the global ecosystem; (ii) with continued growth of human biomass and today's unprecedented global warming, only extraordinary and stepped-up conservation efforts will prevent a new round of extinctions in most body-size and taxonomic spectra; and (iii) a near-future biomass crash that will unfavorably impact humans and their domesticates and other species is unavoidable unless alternative energy sources are developed to replace dwindling supplies of fossil fuels.
Earth’s most recent major extinction episode, the Quaternary Megafauna Extinction, claimed two-thirds of mammal genera and one-half of species that weighed >44 kg between ≈50,000 and 3,000 years ago. Estimates of megafauna biomass (including humans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched the loss of non-human megafauna biomass until ≈12,000 years ago. Then, total megafauna biomass crashed, because many non-human megafauna species suddenly disappeared, whereas human biomass continued to rise. After the crash, the global ecosystem gradually recovered into a new state where megafauna biomass was concentrated around one species, humans, instead of being distributed across many species. Precrash biomass levels were finally reached just before the Industrial Revolution began, then skyrocketed above the precrash baseline as humans augmented the energy available to the global ecosystem by mining fossil fuels. Implications include ( i )an increase in human biomass (with attendant hunting and other impacts) intersected with climate change to cause the Quaternary Megafauna Extinction and an ecological threshold event, after which humans became dominant in the global ecosystem; ( ii ) withcontinued growth of human biomass and today’s unprecedented global warming, only extraordinary and stepped-up conservation efforts will prevent a new round of extinctions in most body-size and taxonomic spectra; and ( iii ) a near-future biomass crash thatwill unfavorably impact humans and their domesticates and other species is unavoidable unless alternative energy sources are developed to replace dwindling supplies of fossil fuels.
We evaluate the boundary of the Anthropocene geological time interval as an epoch, since it is useful to have a consistent temporal definition for this increasingly used unit, whether the presently informal term is eventually formalized or not. Of the three main levels suggested – an ‘early Anthropocene’ level some thousands of years ago; the beginning of the Industrial Revolution at ∼1800 CE (Common Era); and the ‘Great Acceleration’ of the mid-twentieth century – current evidence suggests that the last of these has the most pronounced and globally synchronous signal. A boundary at this time need not have a Global Boundary Stratotype Section and Point (GSSP or ‘golden spike’) but can be defined by a Global Standard Stratigraphic Age (GSSA), i.e. a point in time of the human calendar. We propose an appropriate boundary level here to be the time of the world's first nuclear bomb explosion, on July 16th 1945 at Alamogordo, New Mexico; additional bombs were detonated at the average rate of one every 9.6 days until 1988 with attendant worldwide fallout easily identifiable in the chemostratigraphic record. Hence, Anthropocene deposits would be those that may include the globally distributed primary artificial radionuclide signal, while also being recognized using a wide range of other stratigraphic criteria. This suggestion for the Holocene–Anthropocene boundary may ultimately be superseded, as the Anthropocene is only in its early phases, but it should remain practical and effective for use by at least the current generation of scientists.
Since 2009, the Working Group on the ‘Anthropocene’ (or, commonly, AWG for Anthropocene Working Group), has been critically analysing the case for formalization of this proposed but still informal geological time unit. The study to date has mainly involved establishing the overall nature of the Anthropocene as a potential chronostratigraphic/geochronologic unit, and exploring the stratigraphic proxies, including several that are novel in geology, that might be applied to its characterization and definition. A preliminary summary of evidence and interim recommendations was presented by the Working Group at the 35th International Geological Congress in Cape Town, South Africa, in August 2016, together with results of voting by members of the AWG indicating the current balance of opinion on major questions surrounding the Anthropocene. The majority opinion within the AWG holds the Anthropocene to be stratigraphically real, and recommends formalization at epoch/series rank based on a mid-20th century boundary. Work is proceeding towards a formal proposal based upon selection of an appropriate Global boundary Stratotype Section and Point (GSSP), as well as auxiliary stratotypes. Among the array of proxies that might be used as a primary marker, anthropogenic radionuclides associated with nuclear arms testing are the most promising; potential secondary markers include plastic, carbon isotope patterns and industrial fly ash. All these proxies have excellent global or near-global correlation potential in a wide variety of sedimentary bodies, both marine and non-marine.