Skip to main content Skip to search
Displaying 1 - 5 of 5
<p>Humans often judge others egocentrically, assuming that they feel or think similarly to themselves. Emotional egocentricity bias (EEB) occurs in situations when others feel differently to oneself. Using a novel paradigm, we investigated the neurocognitive mechanisms underlying the developmental capacity to overcome such EEB in children compared with adults. We showed that children display a stronger EEB than adults and that this correlates with reduced activation in right supramarginal gyrus (rSMG) as well as reduced coupling between rSMG and left dorsolateral prefrontal cortex (lDLPFC) in children compared with adults. Crucially, functional recruitment of rSMG was associated with age-related differences in cortical thickness of this region. Although in adults the mere presence of emotional conflict occurs between self and other recruited rSMG, rSMG-lDLPFC coupling was only observed when implementing empathic judgements. Finally, resting state analyses comparing connectivity patterns of rSMG with that of right temporoparietal junction suggested a unique role of rSMG for self-other distinction in the emotional domain for adults as well as for children. Thus, children’s difficulties in overcoming EEB may be due to late maturation of regions distinguishing between conflicting socio-affective information and relaying this information to regions necessary for implementing accurate judgments.</p>
Zotero Collections:

<p>Many powerful human emotional thoughts are generated in the absence of a precipitating event in the environment. Here, we tested whether we can decode the valence of internally driven, self-generated thoughts during task-free rest based on neural similarities with task-related affective mental states. We acquired functional magnetic resonance imaging (fMRI) data while participants generated positive and negative thoughts as part of an attribution task (Session A) and while they reported the occurrence of comparable mental states during task-free rest periods (Session B). With the use of multivariate pattern analyses (MVPA), we identified response patterns in the medial orbitofrontal cortex (mOFC) that encode the affective content of thoughts that are generated in response to an external experimental cue. Importantly, these task driven response patterns reliably predicted the occurrence of affective thoughts generated during unconstrained rest periods recorded one week apart. This demonstrates that at least certain elements of task-cued and task-free affective experiences rely on a common neural code. Furthermore, our findings reveal the role that the mOFC plays in determining the affective tone of unconstrained thoughts. More generally, our results suggest that MVPA is an important methodological tool for attempts to understand unguided subject driven mental states such as mind-wandering and daydreaming based on neural similarities with task-based experiences.</p>
Zotero Collections:

<p>When deprived of compelling perceptual input, the mind is often occupied with thoughts unrelated to the immediate environment. Previous behavioral research has shown that this self-generated task-unrelated thought (TUT), especially under non-demanding conditions, relates to cognitive capacities such as creativity, planning, and reduced temporal discounting. Despite the frequency and importance of this type of cognition, little is known about its structural brain basis. Using MRI-based cortical thickness measures in 37 participants, we were able to show that individuals with a higher tendency to engage in TUT under low-demanding conditions (but not under high-demanding conditions) show an increased thickness of medial prefrontal cortex (mPFC) and anterior/midcingulate cortex. Thickness of these regions also related to less temporal discounting (TD) of monetary rewards in an economic task, indicative of more patient decision-making. The findings of a shared structural substrate in mPFC and anterior/midcingulate cortex underlying both TUT and TD suggest an important role of these brain regions in supporting the self-generation of information that is unrelated to the immediate environment and which may be adaptive in nature.</p>
Zotero Tags:
Zotero Collections:

<p>Autism spectrum conditions (ASC) are neurodevelopmental disorders characterized by abnormal social cognition. A core feature of ASC is disrupted Theory of Mind (ToM), our ability to take the mental perspective of others. ASC is also associated with alexithymia, a trait characterized by altered emotional interoception and empathy. Here, we applied structural MRI covariance analysis to assess whether ASC and alexithymia differentially affect structural brain networks associated with sociocognitive and socioaffective functions. Based on previous functional MRI findings, we expected disrupted ToM networks (centered on dorsomedial prefontal cortex [dmPFC], and temporo-parietal junction [TPJ]) in ASC, while alexithymia would affect networks centered on fronto-insular cortex (FI), regions associated with interoception of emotion and empathy. Relative to controls, ASC indeed showed reduced covariance in networks centered on dmPFC and TPJ, but not within FI networks. Irrespective of ASC, covariance was negatively modulated by alexithymia in networks extending from FI to posterior regions. Network findings were complemented by self-reports, indicating decreased perspective taking but normal empathic concern in ASC. Our results show divergent effects of ASC and alexithymia on inter-regional structural networks, suggesting that networks mediating socioaffective processes may be separable from networks mediating sociocognitive processing.</p>
Zotero Tags:
Zotero Collections:

<p>Previous functional imaging studies have shown key roles of the dorsal anterior insula (dAI) and anterior midcingulate cortex (aMCC) in empathy for the suffering of others. The current study mapped structural covariance networks of these regions and assessed the relationship between networks and individual differences in empathic responding in 94 females. Individual differences in empathy were assessed through average state measures in response to a video task showing others' suffering, and through questionnaire-based trait measures of empathic concern. Overall, covariance patterns indicated that dAI and aMCC are principal hubs within prefrontal, temporolimbic, and midline structural covariance networks. Importantly, participants with high empathy state ratings showed increased covariance of dAI, but not aMCC, to prefrontal and limbic brain regions. This relationship was specific for empathy and could not be explained by individual differences in negative affect ratings. Regarding questionnaire-based empathic trait measures, we observed a similar, albeit weaker modulation of dAI covariance, confirming the robustness of our findings. Our analysis, thus, provides novel evidence for a specific contribution of frontolimbic structural covariance networks to individual differences in social emotions beyond negative affect.</p>
Zotero Collections: