Skip to main content Skip to search
Displaying 1 - 11 of 11
A rapid, sensitive, and selective precolumn derivatization method for the simultaneous determination of eight thiophenols using 3-(2-bromoacetamido)-<i>N</i>-(9-ethyl-9<i>H</i>)-carbazol as a labeling reagent by high-performance liquid chromatography with fluorescence detection has been developed. The labeling reagent reacted with thiophenols at 50°C for 50 min in aqueous acetonitrile in the presence of borate buffer (0.10 mol/L, pH 11.2) to give high yields of thiophenol derivatives. The derivatives were identified by online postcolumn mass spectrometry. The collision-induced dissociation spectra for thiophenol derivatives gave the corresponding specific fragment ions at <i>m/z</i> 251.3, 223.3, 210.9, 195.8, and 181.9. At the same time, derivatives exhibited intense fluorescence with an excitation maximum at λ<sub>ex</sub> = 276 nm and an emission maximum at λ<sub>em</sub> = 385 nm. Excellent linear responses were observed for all analytes over the range of 0.033-6.66 μmol/L with correlation coefficients of more than 0.9997. Detection limits were in the range of 0.94-5.77 μg/L with relative standard deviations of less than 4.54%. The feasibility of derivatization allowed the development of a rapid and highly sensitive method for the quantitative analysis of trace levels of thiophenols from some rubber products. The average recoveries (<i>n</i> = 3) were in the range of 87.21-101.12%.

<br>Display Omitted<br>• 4′-Carbonyl chloride rosamine was synthesized and used for NTs by UHPLC-MS/MS. • <b>In situ</b> UA-DDLLME was reported for the simultaneous determination of AANTs and MANTs. • The method was sensitive, selective, low matrix effect, speedy and eco-friendly. • A new analytical tool in diagnosis of AD-related disease.<br>Neurotransmitters (NTs) may play an important role in neurodegenerative disorders such as Alzheimer’s disease (AD). In order to investigate the potential links, a new simple, fast, accurate and sensitive analytical method, based on <b>in situ</b> ultrasound-assisted derivatization dispersive liquid-liquid microextraction (<b>in situ</b> UA-DDLLME) coupled with ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS), has been developed and validated. The quantitation of amino acid neurotransmitters (AANTs) and monoamine neurotransmitters (MANTs) in urine of AD rats were performed in this work. The <b>in situ</b> UA-DDLLME procedure involved the rapid injection of the mixture of low toxic 4-bromoanisole (extractant) and acetonitrile (dispersant), which containing the new designed and synthesized 4′-carbonyl chloride rosamine (CCR) as derivatization reagent, into the aqueous phase of real sample and buffer. Under the selected conditions, the derivatization and microextraction of analytes were simultaneously completed within 1 min. Good linearity for each analyte (R > 0.992) was observed with low limit of detections (LODs, S/N > 3). Moreover, the proposed method was compared with direct detection or other reported methods, and the results showed that low matrix effects and good recoveries results were obtained in this work. Taken together, <b>in situ</b> UA-DDLLME coupled with UHPLC-MS/MS analysis was demonstrated to be a good method for sensitive, accurate and simultaneous monitoring of AANTs and MANTs. This method would be expected to be highly useful in AD diseases’ clinical diagnostics and may have potential value in monitoring the efficacy of treatment.

Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high-performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid-liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12-oxo-phytodienoic acid, indole-3-acetic acid, 3-indolybutyric acid, 3-indolepropionic acid, gibberellin A₃, 1-naphthylacetic acid, and 2-naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid-liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (<i>R</i>² values). This method offered low detection limits of 0.19-0.44 ng/mL (at a signal-to-noise ratio of 3), and method accuracies were in the range of 92.32-103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.

A novel hyphenated technique based on ultrasonic-assisted dispersive liquid-liquid microextraction (UA-DLLME) coupled with derivatization has been established for the determination of brassinolide (BL, a representative of brassinosteroids) by HPLC fluorescence detection. 9-Phenanthreneboronic acid is used as labeling reagent of BL. UA-DLLME parameters containing type and volume of extraction and disperser solvent, pH and ultrasonication time are optimized. Derivatization parameters are optimized included amount of 9-phenanthreneboronic acid, volume ratio of pyridine, derivatization time and temperature. Under optimal conditions, quantitative linear range of BL is 50-1,000 ng L<sup>−1</sup> and excellent linear response is observed with correlation coefficient of 0.9996. Limit of detection and limit of quantification are calculated as 8.0 and 25.0 ng L<sup>−1</sup>, respectively. RSDs of retention time and peak area are in the range of 0.68-0.97 % and 4.61-6.54 % for intra-day precision, 1.32-1.94 % and 7.28-9.75 % for inter-day precision, respectively. Accuracy is satisfactory in the range of 82.3-125.1 %. RSDs’ values of repeatability are in the range of 0.82-1.79 and 3.95-8.53 % for retention time and peak area, respectively. Enrichment factor for BL is 189. The results of recovery and matrix effect are in the range of 82.0-108.6 and 90.0-115.3 %, respectively. The proposed method has been applied for the determination of BL in <i>Arabidopsis thaliana</i>, <i>Daucus carota</i> and <i>Brassica campestris</i> L. leaves with much higher sensitivity than many other methods.

• A new low toxic dual-UADLLME coupled with microwave-assisted derivatization was proposed. • 4′-Carboxy-substituted rosamine was firstly used as derivatization reagent. • Simultaneous determination of PPD and PPT in rat plasma was achieved by UHPLC-MS/MS. • This method was successfully applied to pharmacokinetics study.<br>This paper, for the first time, reported a speedy hyphenated technique of low toxic dual ultrasonic-assisted dispersive liquid-liquid microextraction (dual-UADLLME) coupled with microwave-assisted derivatization (MAD) for the simultaneous determination of 20(<b>S</b>)-protopanaxadiol (PPD) and 20(<b>S</b>)-protopanaxatriol (PPT). The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) detection using multiple-reaction monitoring (MRM) mode. A mass spectrometry sensitizing reagent, 4′-carboxy-substituted rosamine (CSR) with high reaction activity and ionization efficiency was synthesized and firstly used as derivatization reagent. Parameters of dual-UADLLME, MAD and UHPLC-MS/MS conditions were all optimized in detail. Low toxic brominated solvents were used as extractant instead of traditional chlorinated solvents. Satisfactory linearity, recovery, repeatability, accuracy and precision, absence of matrix effect and extremely low limits of detection (LODs, 0.010 and 0.015 ng/mL for PPD and PPT, respectively) were achieved. The main advantages were rapid, sensitive and environmentally friendly, and exhibited high selectivity, accuracy and good matrix effect results. The proposed method was successfully applied to pharmacokinetics of PPD and PPT in rat plasma.

<br>Display Omitted<br>• A new coupled method of stable isotope-labeling derivatization with UA-DLLME was reported. • Simultaneous determination of multiple neurotransmitters with UHPLC-MS/MS. • Heavy labeled d3-MASC standards were used as the internal standards for quantification. • The method was sensitive, accurate and low matrix effect. • Application for neurotransmitters dynamic changes in rats brain microdialysates.<br>In this work, for the first time, a new hyphenated technique of stable isotope-labeling derivatization-ultrasound-assisted dispersive liquid-liquid microextraction has been developed for the simultaneous determination of monoamine neurotransmitters (MANTs) and their biosynthesis precursors and metabolites. The developed method was based on ultra high performance liquid chromatography tandem mass spectrometry detection using multiple-reaction monitoring mode. A pair of mass spectrometry sensitizing reagents, d0-10-methyl-acridone-2-sulfonyl chloride and d3-10-methyl-acridone-2-sulfonyl chloride, as stable isotope probes was utilized to facilely label neurotransmitters, respectively. The heavy labeled MANTs standards were prepared and used as internal standards for quantification to minimize the matrix effects in mass spectrometry analysis. Low toxic bromobenzene (extractant) and acetonitrile (dispersant) were utilized in microextraction procedure. Under the optimized conditions, good linearity was observed with the limits of detection (S/N > 3) and limits of quantification (S/N > 10) in the range of 0.002-0.010 and 0.015-0.040 nmol/L, respectively. Meanwhile, it also brought acceptable precision (4.2-8.8%, peak area RSDs %) and accuracy (recovery, 96.9-104.1%) results. This method was successfully applied to the simultaneous determination of monoamine neurotransmitters and their biosynthesis precursors and metabolites in rat brain microdialysates of Parkinson's disease and normal rats. This provided a new method for the neurotransmitters related studies in the future.

BACKGROUND: Currently, commercially prepared complementary foods have become an important part of the diet of many infants and toddlers. But the method for simultaneous analysis of different types of micronutrient remains poorly investigated, which hinders the rapid and comprehensive quality control of infant foods. In the presented study, we first tried to employ the fluorescence labeling strategy combined with high-performance liquid chromatography-fluorescence detection for simultaneous determination of some acidic micronutrients including biotin, nicotinic acid, linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, arachidonic acid and linoleic acid in infant foods.<br>RESULTS: 2-(5-Benzoacridine) ethyl-p-toluenesulfonate was used as the fluorescence labeling reagent for simultaneous labeling of the seven components. The labeling conditions were optimized systematically by response surface methodology. The correlation coefficients for the calibration curves of the tested compounds ranged from 0.9991 to 0.9998. Limits of detection were in the range of 1.99-3.05 nmol L<sup>−1</sup>. Relative standard deviation values of retention time and peak area of seven compounds were less than 0.05% and 0.75%, respectively. The intra- and inter-day precision was in the range of 1.81-3.80% and 3.21-4.30%, respectively. When applied to analysis of several infant foods it showed good applicability.<br>CONCLUSION: The developed method has been proven to be simple, inexpensive, selective, sensitive, accurate and reliable for analysis of some acidic micronutrients in infant foodstuffs. Furthermore, this developed method also has powerful potential in the analysis of many other complementary foodstuffs. © 2015 Society of Chemical Industry

<br>• A DLLME/HPLC-FLD method for triterpenic acid determination was developed. • DLLME was firstly used for preconcentration of triterpenic acids in medicinal herbs. • This method was sensitive and selective for triterpenic acid analysis. • A new derivatization reagent for triterpenic acid has been synthesized.<br>A novel analytical method was developed for simultaneous determination of six triterpenic acids using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) follow by high-performance liquid chromatography (HPLC) with fluorescence detection. Six triterpenic acids (ursolic acid, oleanolic acid, betulinic acid, maslinic acid, betulonic acid and corosolic acid) were extracted by UA-DLLME using chloroform and acetone as the extraction and disperser solvents, respectively. After the extraction and nitrogen flushing, the extracts were rapidly derivatized with 2-(12,13-dihydro-7H-dibenzo[a,g]carbazol-7-yl)ethyl4-methylbenzenesulfonate. The main experimental parameters affecting extraction efficiency and derivatization yield were investigated and optimized by response surface methodology (RSM) combined with Box-Behnken design (BBD). The limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.95-1.36 ng mL−1 and 3.17-4.55 ng mL−1, respectively. Under the optimum conditions, the method has been successfully applied for the analysis of triterpenic acids in six different traditional Chinese medicinal herbs.

• In situ derivatization-UADLLME was firstly reported for NTs in rat brain microdialysates. • Lissamine rhodamine B sulfonyl chloride was firstly used as derivatization reagent. • The method was simple, rapid, green, efficient, sensitive and low matrix effect. • This method was successfully applied for Parkinson’s rat brain microdialysates.<br>Simultaneous monitoring of several neurotransmitters (NTs) linked to Parkinson’s disease (PD) has important scientific significance for PD related pathology, pharmacology and drug screening. A new simple, fast and sensitive analytical method, based on in situ derivatization-ultrasound-assisted dispersive liquid-liquid microextraction (in situ DUADLLME) in a single step, has been proposed for the quantitative determination of catecholamines and their biosynthesis precursors and metabolites in rat brain microdialysates. The method involved the rapid injection of the mixture of low toxic bromobenzene (extractant) and acetonitrile (dispersant), which containing commercial Lissamine rhodamine B sulfonyl chloride (LRSC) as derivatization reagent, into the aqueous phase of sample and buffer, and the following in situ DUADLLME procedure. After centrifugation, 50 μL of the sedimented phase (bromobenzene) was directly injected for ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) detection in multiple reaction monitoring (MRM) mode. This interesting combination brought the advantages of speediness, simpleness, low matrix effects and high sensitivity in an effective way. Parameters of in situ DUADLLME and UHPLC-MS/MS conditions were all optimized in detail. The optimum conditions of in situ DUADLLME were found to be 30 μL of microdialysates, 150 μL of acetonitrile containing LRSC, 50 μL of bromobenzene and 800 μL of NaHCO3-Na2CO3 buffer (pH 10.5) for 3.0 min at 37 °C. Under the optimized conditions, good linearity was observed with LODs (S/N > 3) and LOQs (S/N > 10) of LRSC derivatized-NTs in the range of 0.002-0.004 and 0.007-0.015 nmol/L, respectively. It also brought good precision (3.2-12.8%, peak area CVs%), accuracy (94.2-108.6%), recovery (94.5-105.5%) and stability (3.8-8.1%, peak area CVs%) results. Moreover, LRSC derivatization significantly improved chromatographic resolution and MS detection sensitivity of NTs when compared with the reported studies through the introduction of a permanent charged moiety from LRSC into NTs. Taken together, this in situ DUADLLME method was successfully applied for the simultaneous determination of six NTs in biological samples.