Skip to main content Skip to search
Displaying 1 - 4 of 4
A simple and sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection and mass spectrometric identification has been developed for analysis of 30 long-chain and short-chain free fatty acids (FFAs). The fatty acids were derivatized to their esters with 1-[2-(<i>p</i>-toluenesulfonate)ethyl]-2-phenylimidazole-[4,5-<i>f</i>]-9,10-phenanthrene (TSPP) in <i>N</i>,<i>N</i>-dimethylformamide (DMF) at 90 °C with anhydrous K<sub>2</sub>CO<sub>3</sub> as catalyst. A mixture of C<sub>1</sub>-C<sub>30</sub> fatty acids was completely separated within 60 min by gradient elution on a reversed-phase C<sub>8</sub> column. Qualitative identification of the acids was performed by atmospheric-pressure chemical ionization mass spectrometry (APCI-MS) in positive-ion mode. The fluorescence excitation and emission wavelengths were 260 and 380 nm, respectively. Quantitative determination of the 30 acids in two Tibetan medicines <i>Gentiana straminea</i> and <i>G. dahurica</i> was performed. The results indicated that the medicines contained many FFAs. Linear correlation coefficients for the FFA derivatives were >0.9991. Relative standard deviations (RSDs, <i>n</i> = 6) for the fatty acid derivatives were <3%. Detection limits (at a signal-to-noise ratio of 3:1) were 3.1-38 fmol. When the fatty acid derivatives were determined in the two real samples results were satisfactory and the sensitivity and reproducibility of the method were good.

&lt;p&gt;A simple and sensitive method for the determination of free fatty acids (FFAs) using acridone€́9€́ethyl€́p€́toluenesulfonate (AETS) as a fluorescence derivatization reagent by high performance liquid chromatography (HPLC) has been developed. Free fatty acid derivatives were separated on an Eclipse XDB€́C&lt;sub&gt;8&lt;/sub&gt; column with a good baseline resolution and detected with the fluorescence of which excitation and emission wavelengths of derivatives were set at &lt;sub&gt;ex&lt;/sub&gt;=404 and &lt;sub&gt;em&lt;/sub&gt;=440 nm, respectively. Identification of 19 fatty acid derivatives was carried out by online post€́column mass spectrometry with an atmospheric pressure chemical ionization (APCI) source under positive€́ion detection mode. Nineteen FFAs from the extract of &lt;i&gt;Lomatogonium rotatum&lt;/i&gt; are sensitively determined. The results indicate that the plant &lt;i&gt;Lomatogonium rotatum&lt;/i&gt; is enriched with an abundance of FFAs and FFAs of higher contents, which mainly focus on even carbon atoms, C&lt;sub&gt;14&lt;/sub&gt;, C&lt;sub&gt;16&lt;/sub&gt;, and C&lt;sub&gt;18&lt;/sub&gt;. The validation of the method including linearity, repeatability, and detection limits was examined. Most linear correlation coefficients for fatty acid derivatives are &gt;0.9989, and detection limits (at signal€́to€́noise of 3:1) are 12.3-43.7 fmol. The relative standard deviations (RSDs) of the peak areas and retention times for 19 FFAs standards are &lt;2.24% and 0.45%, respectively. The established method is rapid and reproducible for the separation determination of FFAs from the extract of &lt;i&gt;Lomatogonium rotatum&lt;/i&gt; with satisfactory results.&lt;/p&gt;

Concentrations of 20 free amino aicds (FAAs) in a famous Tibetan medicine Gentiana dahurica was first investigated using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as the pre-column fluorescence derivatization reagent by reversed-phase high performance liquid chromatography (RP-LC). 20 amino acid derivatives (AAD) were separated on a Hypersil BDS C<sub>18</sub> column with a good baseline resolution within 65 min. Identification of 20 AAD was by online post-column mass spectrometry with an electrospray ionization (ESI) source. The validation of the method was examined by linearity, repeatability, and detection limits. Most linear correlation coefficients for AAD were &gt;0.9990, and detection limits (at signal-to-noise of 3:1) were 6.5-178.2 fmol. There were 18 FAAs found in G. dahurica, of which seven FAAs were necessary to the people's health and related to the treatment of liver and gall disease. Variation of concentrations of the 20 FAAs showed geographical distribution difference among populations. Meanwhile a stable genetic diversity of FAAs composition of G. dahurica was also revealed at the species level. Results of the present study proved that the established method was rapid and reproducible for further separation and determination of FAAs in more medicinal plants.

Introduction: Xanthones, the primary constituents of <i>Swertia mussotii</i>, are known to possess a variety of biological activities, including anti-depressant, anti-leukaemic, anti-tumour, anti-tubercular, choleretic, diuretic, anti-microbial, anti-fungal, anti-inflammatory, anti-viral, cardiotonic and hypoglycemic properties. However, high performance, environmentally friendly methods for isolating and purifying xanthones from <i>S. mussotii</i> are not currently available.<br>Objective: To develop a high performance and environmentally friendly method for the preparative separation of xanthones methylswertianin, swerchirin and decussatin from <i>S. mussotii</i> using high-speed counter-current chromatography (HSCCC).<br>Methodology: A solvent system composed of <i>n</i>-hexane:ethyl acatate:methanol:water (5:5:10:4, v/v/v/v) was developed for the separation method. The upper phase was used as the stationary phase, and the lower phase was used as the mobile phase at a flow rate of 1.5 mL/min, a rotation speed of 800 rpm and a temperature of 25 °C.<br>Results: Using the described method, 8 mg of methylswertianin, 21 mg of swerchirin and 11 mg of decussatin with purities of over 98% could be isolated from a 150 mg crude sample. They were identified by ¹H-NMR and <sup>13</sup> C-NMR analysis.<br>Conclusion: Three xanthones in <i>Swertia mussotii</i> could be systematically isolated and purified using HSCCC. Copyright © 2011 John Wiley & Sons, Ltd.