Skip to main content Skip to search
Displaying 1 - 2 of 2
Event-related functional magnetic resonance imaging (efMRI) has emerged as a powerful technique for detecting brains’ responses to presented stimuli. A primary goal in efMRI data analysis is to estimate the Hemodynamic Response Function (HRF) and to locate activated regions in human brains when specific tasks are performed. This paper develops new methodologies that are important improvements not only to parametric but also to nonparametric estimation and hypothesis testing of the HRF. First, an effective and computationally fast scheme for estimating the error covariance matrix for efMRI is proposed. Second, methodologies for estimation and hypothesis testing of the HRF are developed. Simulations support the effectiveness of our proposed methods. When applied to an efMRI dataset from an emotional control study, our method reveals more meaningful findings than the popular methods offered by AFNI and FSL.
Zotero Tags:
Zotero Collections:

Diffusion tensor imaging (DTI) plays a key role in analyzing the physical structures of biological tissues, particularly in reconstructing fiber tracts of the human brain in vivo. On the one hand, eigenvalues of diffusion tensors (DTs) estimated from diffusion weighted imaging (DWI) data usually contain systematic bias, which subsequently biases the diffusivity measurements popularly adopted in fiber tracking algorithms. On the other hand, correctly accounting for the spatial information is important in the construction of these diffusivity measurements since the fiber tracts are typically spatially structured. This paper aims to establish test-based approaches to identify anisotropic water diffusion areas in the human brain. These areas in turn indicate the areas passed by fiber tracts. Our proposed test statistic not only takes into account the bias components in eigenvalue estimates, but also incorporates the spatial information of neighboring voxels. Under mild regularity conditions, we demonstrate that the proposed test statistic asymptotically follows a $\chi^2$ distribution under the null hypothesis. Simulation and real DTI data examples are provided to illustrate the efficacy of our proposed methods.
Zotero Collections: