Skip to main content Skip to search
Displaying 1 - 5 of 5
We explore the development of the Anthropocene, the current epoch in which humans and our societies have become a global geophysical force. The Anthropocene began around 1800 with the onset of industrialization, the central feature of which was the enormous expansion in the use of fossil fuels. We use atmospheric carbon dioxide concentration as a single, simple indicator to track the progression of the Anthropocene. From a preindustrial value of 270-275 ppm, atmospheric carbon dioxide had risen to about 310 ppm by 1950. Since then the human enterprise has experienced a remarkable explosion, the Great Acceleration, with significant consequences for Earth System functioning. Atmospheric CO2 concentration has risen from 310 to 380 ppm since 1950, with about half of the total rise since the preindustrial era occurring in just the last 30 years. The Great Acceleration is reaching criticality. Whatever unfolds, the next few decades will surely be a tipping point in the evolution of the Anthropocene.

Over the past century, the total material wealth of humanity has been enhanced. However, in the twenty-first century, we face scarcity in critical resources, the degradation of ecosystem services, and the erosion of the planet’s capability to absorb our wastes. Equity issues remain stubbornly difficult to solve. This situation is novel in its speed, its global scale and its threat to the resilience of the Earth System. The advent of the Anthropence, the time interval in which human activities now rival global geophysical processes, suggests that we need to fundamentally alter our relationship with the planet we inhabit. Many approaches could be adopted, ranging from geo-engineering solutions that purposefully manipulate parts of the Earth System to becoming active stewards of our own life support system. The Anthropocene is a reminder that the Holocene, during which complex human societies have developed, has been a stable, accommodating environment and is the only state of the Earth System that we know for sure can support contemporary society. The need to achieve effective planetary stewardship is urgent. As we go further into the Anthropocene, we risk driving the Earth System onto a trajectory toward more hostile states from which we cannot easily return.

Global events such as mass extinctions, the onset of Ice Ages, and changes in geochemistry linked with changes in atmospheric chemistry are timeposts in geological strata. In the timeline for Earth history, they allow segmentation of its 4.6 billion year existence into eons, eras, periods, and epochs. As human activity makes its recently initiated yet globally extensive mark that is leading to mass extinctions, changes in atmospheric and marine chemistry, and altering terrestrial features, should a new epoch be declared? Can such an Anthropocene be geologically standardized in strata? Zalasiewicz et al make their case in this article featured in ES&T’s April 1, 2010 print issue recognizing the 40th Anniversary of Earth Day.

We evaluate the boundary of the Anthropocene geological time interval as an epoch, since it is useful to have a consistent temporal definition for this increasingly used unit, whether the presently informal term is eventually formalized or not. Of the three main levels suggested – an ‘early Anthropocene’ level some thousands of years ago; the beginning of the Industrial Revolution at ∼1800 CE (Common Era); and the ‘Great Acceleration’ of the mid-twentieth century – current evidence suggests that the last of these has the most pronounced and globally synchronous signal. A boundary at this time need not have a Global Boundary Stratotype Section and Point (GSSP or ‘golden spike’) but can be defined by a Global Standard Stratigraphic Age (GSSA), i.e. a point in time of the human calendar. We propose an appropriate boundary level here to be the time of the world's first nuclear bomb explosion, on July 16th 1945 at Alamogordo, New Mexico; additional bombs were detonated at the average rate of one every 9.6 days until 1988 with attendant worldwide fallout easily identifiable in the chemostratigraphic record. Hence, Anthropocene deposits would be those that may include the globally distributed primary artificial radionuclide signal, while also being recognized using a wide range of other stratigraphic criteria. This suggestion for the Holocene–Anthropocene boundary may ultimately be superseded, as the Anthropocene is only in its early phases, but it should remain practical and effective for use by at least the current generation of scientists.

Since 2009, the Working Group on the ‘Anthropocene’ (or, commonly, AWG for Anthropocene Working Group), has been critically analysing the case for formalization of this proposed but still informal geological time unit. The study to date has mainly involved establishing the overall nature of the Anthropocene as a potential chronostratigraphic/geochronologic unit, and exploring the stratigraphic proxies, including several that are novel in geology, that might be applied to its characterization and definition. A preliminary summary of evidence and interim recommendations was presented by the Working Group at the 35th International Geological Congress in Cape Town, South Africa, in August 2016, together with results of voting by members of the AWG indicating the current balance of opinion on major questions surrounding the Anthropocene. The majority opinion within the AWG holds the Anthropocene to be stratigraphically real, and recommends formalization at epoch/series rank based on a mid-20th century boundary. Work is proceeding towards a formal proposal based upon selection of an appropriate Global boundary Stratotype Section and Point (GSSP), as well as auxiliary stratotypes. Among the array of proxies that might be used as a primary marker, anthropogenic radionuclides associated with nuclear arms testing are the most promising; potential secondary markers include plastic, carbon isotope patterns and industrial fly ash. All these proxies have excellent global or near-global correlation potential in a wide variety of sedimentary bodies, both marine and non-marine.