Skip to main content Skip to search
Displaying 1 - 8 of 8
The authors present an overview of the neural bases of emotion. They underscore the role of the prefrontal cortex (PFC) and amygdala in 2 broad approach- and withdrawal-related emotion systems. Components and measures of affective style are identified. Emphasis is given to affective chronometry and a role for the PFC in this process is proposed. Plasticity in the central circuitry of emotion is considered, and implications of data showing experience-induced changes in the hippocampus for understanding psychopathology and stress-related symptoms are discussed. Two key forms of affective plasticity are described--context and regulation. A role for the hippocampus in context-dependent normal and dysfunctional emotional responding is proposed. Finally, implications of these data for understanding the impact on neural circuitry of interventions to promote positive affect and on mechanisms that govern health and disease are considered.
Zotero Collections:

This integral heuristic phenomenological investigation records participants’ experiences of a single session of breath meditation with special reference to psychotherapy and sport psychology. There were 8 participants, 4 men and 4 women, with mean age of 45 years and age range from 31 to 62 years. Various breathing patterns and related consciousness transformations were revealed in all experiential breath meditation descriptions and their associated neurophysiologic signatures, which indicated predominantly alpha wave and sensory motor region activity. Psychotherapeutic and sport psychological findings indicated that breath work facilitates many healing ingredients, with many athletes viewing breathing exercises as the most useful tool learned. Integrated findings strongly endorse the value of breath work. Further research and practice in the area is recommended.Keywords: Breath meditation, phenomenology, neurophysiology, psychotherapy, sport psychology.

Aversive Pavlovian conditioning is an important tool used to investigate neurobiological mechanisms underlying the acquisition and expression of fear. Most studies have used nonprimate species employing electrical shock as the unconditioned stimulus (US). Although important advances have been made in understanding the neural substrates of conditioned fear, the extent to which these findings apply to primates is unclear. Research in primates has not progressed because of the lack of a conditioning paradigm that does not use shock. Therefore, we developed a method that uses a US consisting of a loud noise coupled with a stream of compressed air aimed at the face to aversively condition heart rate response in rhesus monkeys. With this US, rhesus monkeys rapidly acquire a conditioned bradycardia. The availability of an easy, reliable, and efficient method of aversive conditioning that does not require electrical shock, will facilitate studies investigating neurobiological mechanisms underlying the acquisition and expression of fear in primates.
Zotero Collections:

Davidson and Schwartz (1) have proposed a psychobiological analysis of anxiety that emphasizes the patterning of multiple processes in the generation and self-regulation of this state. The present article specifically reviews recent research on cognitive and somatic components of anxiety. A dual component scale which separately assesses cognitive and somatic trait anxiety is described and applied to the study of the differential effects of a somatic (physical exercise) and a cognitive (meditation) relaxation procedure. A total of 77 subjects was employed; 44 regularly practiced physical exercise and 33 regularly practiced meditation for comparable periods of time. As predicted, subjects practicing physical exercise reported relatively less somatic and more cognitive anxiety than meditators. These data suggest that specific subcomponents of anxiety may be differentially associated with relaxation techniques engaging primarily cognitive versus somatic subsystems. It is proposed that relaxation consists of (1) a generalized reduction to multiple physiological systems (termed the relaxation response by Benson) and (2) a more specific pattern of changes superimposed upon this general reduction, which is elicited by the particular techniques employed. The data from this retrospective study need to be followed up by prospective studies to establish the precise mechanisms for these effects.
Zotero Collections:

This experiment was designed to assess the differential impact of initially presenting affective information to the left versus right hemisphere on both the perception of and response to the input. Nineteen right-handed subjects were presented with faces expressing happiness and sadness. Each face was presented twice to each visual field for an 8-sec duration. The electro-oculogram (EOG) was monitored and fed back to subjects to train them to keep their eyes focused on the central fixation point as well as to eliminate trials confounded by eye movement artifact. Following each slide presentation, subjects rated the intensity of the emotional expression depicted in the face and their emotional reaction to the face on a series of 7-point rating scales. Subjects reported perceiving more happiness in response to stimuli initially presented to the left hemisphere (right visual field) compared to presentations of the identical faces to the right hemisphere (left visual field). This effect was predominantly a function of ratings on sad faces. A similar, albeit less robust, effect was found on self-ratings of happiness (the degree to which the face elicited the emotion in the viewer). These data challenge the view that the right hemisphere is uniquely involved in all emotional behavior. The implications of these findings for theories concerning the lateralization of emotional behavior are discussed.
Zotero Collections: