Skip to main content Skip to search
Displaying 1 - 15 of 15
Species identification and quality control of Tibetan medicines are an important part of its modernization studies, and they have important significance for ensuring the safety and effectiveness of Tibetan medicines in clinical application. In order to provide a reference for the modernization research of Tibetan medicines, this paper summarized the research progress of species identification, quality standards and quality evaluation of Tibetan medicines in the past 10 years. It also introduces the application examples of some new technologies and methods, such as DNA barcoding, infrared spectroscopy and 1H NMR-based metabolomics.; Copyright© by the Chinese Pharmaceutical Association.

This study is aimed to explore the effect of nitrogen, phosphorus and potassium combined application on the active components of Rhodiola crenulata. R. crenulata was used as the research object, "3414" fertilization experiment were conducted with regular fertilization of NPK(N 60 kg·hm⁻², P₂O₅ 100 kg·hm⁻²,KCl 160 kg·hm⁻²) to study the effect of different rates of NPK fertilization on the total amount of 4 phenolic constituents of gallic acid, salidroside, tyrol and ethyl gallate through field test. The results show that the content of salidroside was higher in the treatment of N₁P₂K₁ and N₁P₂K₂, andthe total amount of four phenols was higher in the treatment of N₁P₂K₂ and N₂P₂K₂. The suitable level of nitrogen, phosphorus and potassium promoted the accumulation of the 4 kinds of phenols.The amount of fertilizer recommended by the three factor fertilizer effect equation,(N 0 kg·hm⁻²,P₂O₅ 150 kg·hm⁻²,KCl 31.71 kg·hm⁻²) obtained the highest content of salidroside, and it was 1.54%.(N 35.54 kg·hm⁻²,P₂O₅ 150 kg·hm⁻²,KCl 237.73 kg·hm⁻²)obtained the highest content of 4 kinds of phenolic compounds, and it was 1.93%. This study provides a reference for the standardization of artificial planting of endangered Tibetan medicine.

Fecal Tibetan medicines have a long history of application in China, with a good clinical efficacy. In order to promote the development and modernization of these medicines, we consulted ancient and modern Tibetan medicine literatures to collect and summarize the names, original species, natures, flavor, functions and processing methods of fecal Tibetan medicines. A total of 35 fecal Tibetan medicines were collected, such as Jiufen, Heibingpian, Langfen, Mafen, Goufen, Gezifen. The most commonly used medicines were Jiufen and Heibingpian. Both were mainly used for the treatment of indigestion, food abdominal distension, gastric ulcer, and other gastrointestinal diseases. At present, there are only a few studies on the active ingredients, pharmacodynamics and mechanism of action of these medicines. Therefore, further study shall be conducted. The regulation of gut microbiota may be a new way to evaluate the effectiveness of fecal Tibetan medicines and their mechanism of action.

To differentiate three medicinal Hippopahe species of seabuckthorn, a combined genetic and chemical identification method was established in this study. ITS2 and psbA-trnH were tested for identification of 3 species of seabuckthorn. Detection of the kimura 2-parameter (K2P) distance, the neighbor-joining (NJ) tree and the barcoding gap were used to assess the identification efficiency. ¹H-NMR based metabolic method was applied to acquire the profile of metabolites. PCA was used to analysis the metabolite data. The results indicated that DNA barcode combined ¹H-NMR based metabolic method is a powerful tool for the identification of 3 medicinal Hippopahe species of seabuckthorn. The finding demonstrated that different genetic variation and chemical constituents existed among 3 medicinal Hippopahe species of seabuckthorn. The combined identification method will improve the reliability of species discrimination and could be applicable to much other ethnic medicine which has various origins in China.

This study established an HPLC fingerprint of Tibetan medicine Shaji Gao from different habitats and lay a foundation for Shaji Gao varieties identification and preparation process. The chromatographic condition was as follow: Agilent zorbax SB-C18 (4.6 mm x 250 mm, 5 μm) eluted with the mobile phases of acetonitrile and 0.4% phosphoric acid water in gradient mode. The flow rate was 1.0 mL x min(-1), and the detection wavelength was set at 360 nm. The fingerprints of 15 batches Shaji Gao were carried out by similarity comparation, 7 chromatographic peaks were extracted as the common peaks of fingerprint, 3 peaks were identified, which were quercetin, kaempferol and isorhamnetin. The similarity degrees of 14 batches of samples were above 0.9 and 1 batch of samples was below 0.9. This is the first established fingerprint of Shaji Gao by using HPLC. This method has good precision, stability and repeatability that it could provide basis for quality control and evaluation of Shaji Gao.

The ITS2 barcode was used toidentify Tibetan medicine "Dida", and tosecure its quality and safety in medication. A total of 13 species, 151 experimental samples for the study from the Tibetan Plateau, including Gentianaceae Swertia, Halenia, Gentianopsis, Comastoma, Lomatogonium ITS2 sequences were amplified, and purified PCR products were sequenced. Sequence assembly and consensus sequence generation were performed using the CodonCode Aligner V3.7.1. The Kimura 2-Parameter (K2P) distances were calculated using MEGA 6.0. The neighbor-joining (NJ) phylogenetic trees were constructed. There are 31 haplotypes among 231 bp after alignment of all ITS2 sequence haplotypes, and the average G±C content of 61.40%. The NJ tree strongly supported that every species clustered into their own clade and high identification success rate, except that Swertia bifolia and Swertia wolfangiana could not be distinguished from each other based on the sequence divergences. DNA barcoding could be used as a fast and accurate identification method to distinguish Tibetan medicine "Dida" to ensure its safe use.

Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name “Shaji”, to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.

Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name "Zangyinchen" for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive (1)H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative (1)H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that (1)H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen.

Swertia mussotii Franch. and Swertia chirayita Buch.-Ham. have been commonly used under the same name 'Zangyinchen' for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive H-1 NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative H-1 NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that S. mussotii had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas S. chirayita exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that H-1 NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two Swertia species, and can be used to verify the genuine origin of Zangyinchen. (C) 2014 Elsevier B.V. All rights reserved.

<br>• A 1H NMR-based method is first developed to differentiate two <b>Swertia</b> species. • The two <b>Swertia</b> species exhibit significant differences in their metabolic profiling. • Nine metabolic markers responsible for the differences are screened out. • A qHNMR method is used for quantitative analysis of the discriminating metabolites. • The proposed 1H NMR-based metabolomics method is rapid, reliable and effective.<br><b>Swertia mussotii</b> Franch. and <b>Swertia chirayita</b> Buch.-Ham. have been commonly used under the same name “Zangyinchen” for the treatment of liver and gallbladder diseases in traditional Tibetan medicine. Detailed characterization and comparison of the complete set of metabolites of these two species are critical for their objective identification and quality control. In this study, a rapid, simple and comprehensive 1H NMR-based metabolomics method was first developed to differentiate the two species. A broad range of metabolites, including iridoid glycosides, xanthones, triterpenoids, flavonoids, carbohydrates, and amino acids, were identified. Statistical analysis showed evident differences between the two species, and the major markers responsible for the differences were screened. In addition, quantitative 1H NMR method (qHNMR) was used for the target analysis of the discriminating metabolites. The results showed that <b>S. mussotii</b> had significantly higher contents of gentiopicrin, isoorientin, glucose, loganic acid, and choline, whereas <b>S. chirayita</b> exhibited higher levels of swertiamarin, oleanolic acid, valine, and fatty acids. These findings indicate that 1H NMR-based metabolomics is a reliable and effective method for the metabolic profiling and discrimination of the two <b>Swertia</b> species, and can be used to verify the genuine origin of Zangyinchen.

Liver disease is one of the most risk factors threatening human health. It is of great significance to find drugs that can treat liver diseases, especially for acute and chronic hepatitis, non-alcoholic fatty liver disease, and liver cancer. The search for drugs with good efficacy from traditional natural medicines has attracted more and more attention. Tibetan medicine, one of the China's traditional medical systems, has been widely used by the Tibetan people for the prevention and treatment of liver diseases for hundreds of years. The present paper summarized the natural Tibetan medicines that have been used in Tibetan traditional system of medicine to treat liver diseases by bibliographic investigation of 22 Tibetan medicine monographs and drug standards. One hundred and ninety three species including 181 plants, 7 animals, and 5 minerals were found to treat liver diseases in traditional Tibetan medicine system. The most frequently used species are Carthamus tinctorius, Brag-zhun, Swertia chirayita, Swertia mussotii, Halenia elliptica, Herpetospermum pedunculosum, and Phyllanthus emblica. Their names, families, medicinal parts, traditional uses, phytochemicals information, and pharmacological activities were described in detail. These natural medicines might be a valuable gift from the old Tibetan medicine to the world, and would be potential drug candidates for the treatment of liver diseases. Further studies are needed to prove their medicinal values in liver diseases treatment, identify bioactive compounds, elucidate the underlying mechanism of action, and clarify their side effects or toxicity with the help of modern phytochemical, pharmacological, metabonomics, and/or clinical trial methods.

Tibetan medicine "Dida" isoccasionally misused due to its complex origins, which ultimately affects its clinical efficacy. The accurate name, origin, property, and efficacy of "Dida"are highly important for its further research and development. In the present study, by viewing the classic Tibetan medicine and modern literature, and combining the clinical practice of Tibetan medicine, the origins, properties and the clinic effects of "Dida" were defined. "Dida" originated from multiple plant species of Swertia, Gentianopsis, Halenia, Lomatogonium, Comastoma(Gentianaceae), Hedyotis (Saxifragaceae) and Erysimum (Cruciferae). The medicinal properties of "Dida" is mainly bitter and cold. It has been commonly used to treat febrile diseases and hepatic and gall diseases. This study suggested that the relevant herbalogical study, species identification and pharmacological effects of "Dida" should be taken based on the Tibetan medicine theories and clinical practice. Thus the medicine can be better used and ensure its safety and quality simultaneously.

This study is to develop an UPLC-PDA method for determination of 10 major components in Pterocephalus. The UPLC-PDA assay was performed on a Waters Acquity UPLCR BEH C₁₈(2.1 mm ×100 mm,1.7 μm), and the column temperature was at 30 ℃. The mobile phase consists of water containing 0.2% phosphoric acid (A) and acetonitrile (B) in gradient elution at a flow rate of 0.4 mL•min⁻¹. The detection wave length was set at 237 and 325 nm, and the injection volume was 1 μL in the UPLC system. The linear range of 10 detected compounds were good (r≥0.999 7), and the overall recoveries ranged from 96.30% to 103.0%, with the RSD ranging from 0.72% to 2.9%. The method was simple, accurate and reproducible, which can be used for the simultaneous determination of the content of ten major components in P. hookeri.

To evaluate the efficacy and safety associated with anti-hypoxia effect and establish the quality standard for Brassicea Radix extract, the investigations of acute toxicity and subacute toxicity were carried out to preliminarily appraise the toxicity, and the models of normal pressure hypoxia, acute cerebral ischemia and sodium nitrite poisoning in mice were used to evaluate the effect of enhancing anoxia endurance. Then according to the methods described in the Appendix of Chinese Pharmacopoeia (2010 edition), the sulfuric acid-phenol method was applied to determine the content of polysaccharide, and the water, ash and insoluble matter in water inspections were carried out and the control medicinal herb was identified with the samples by qualitative TLC. The results indicated that ① the toxic effects (LD₅₀) of mice was 56.73 g•kg⁻¹ by oral administration of Brassicea Radix extract, while Dm and Dn were respective 86.80 g•kg•d⁻¹ and 35.55 g•kg•d⁻¹;②the determined effective dosage of Brassicea Radix extract which could enhance anoxia endurance was 0.388 g•kg⁻¹•d⁻¹; ③ the methods of TLC and the content of polysaccharide were established. The method of quality control has been recorded in Sichuan Province Standard for Tibetan Medicine, which is reliable, accurate and simple, with good reproducibility. Meanwhile, given the prominent effect on anti-hypoxia and good safety, it provided important basis for clinic safe and effective usage and the development of health products.

DNA barcoding technique in combination with UFLC analysis technology was used to evaluate the quality of Tibetan medicine Pterocephalus hookeri from species identification and chemical qualitative and other aspects. Hybrid identification was established by DNA barcoding; UFLC-PDA was adopted to analyse fingerprint of different parts of Pterocephali Herba, and SPSS and Grey relation software were used for data analysis. The result showed that DNA barcoding is an accurate and reliable method in origin identification of Pterocephalus hookeri. The compounds in overground is more than underground by analysis of the different part fingerprint by UFLC. The genetic gene may be involved in the secondary metabolites of iridoid glycosides. Pertinence between gene and chemical component, as a new model established, could be suited for quality evaluation and resources protection.