Displaying 1 - 2 of 2
The control of cheating is important for understanding major transitions in evolution, from the simplest genes to the most complex societies. Cooperative systems can be ruined if cheaters that lower group productivity are able to spread. Kin-selection theory predicts that high genetic relatedness can limit cheating, because separation of cheaters and cooperators limits opportunities to cheat and promotes selection against low-fitness groups of cheaters. Here, we confirm this prediction for the social amoeba Dictyostelium discoideum; relatedness in natural wild groups is so high that socially destructive cheaters should not spread. We illustrate in the laboratory how high relatedness can control a mutant that would destroy cooperation at low relatedness. Finally, we demonstrate that, as predicted, mutant cheaters do not normally harm cooperation in a natural population. Our findings show how altruism is preserved from the disruptive effects of such mutant cheaters and how exceptionally high relatedness among cells is important in promoting the cooperation that underlies multicellular development.
Kin selection theory, also known as inclusive fitness theory, has been the subject of much debate and misunderstanding. Nevertheless, the idea that relatedness among individuals can drive the evolution of altruism has emerged as a central paradigm in evolutionary biology. Or has it? In two recent articles, E.O. Wilson argues that kin selection should no longer be considered the main explanation for the evolution of altruism in insect societies. Here, we discuss what these articles say about kin selection and how it relates to the theory. We conclude that kin selection remains the key explanation for the evolution of altruism in eusocial insects.