Skip to main content Skip to search
Displaying 1 - 3 of 3
Major depression is a heterogeneous condition, and the search for neural correlates specific to clinically defined subtypes has been inconclusive. Theoretical considerations implicate frontostriatal, particularly subgenual prefrontal cortex (PFC), dysfunction in the pathophysiology of melancholia--a subtype of depression characterized by anhedonia--but no empirical evidence has been found yet for such a link. To test the hypothesis that melancholic, but not nonmelancholic depression, is associated with the subgenual PFC impairment, concurrent measurement of brain electrical (electroencephalogram, EEG) and metabolic (positron emission tomography, PET) activity were obtained in 38 unmedicated subjects with DSM-IV major depressive disorder (20 melancholic, 18 nonmelancholic subjects), and 18 comparison subjects. EEG data were analyzed with a tomographic source localization method that computed the cortical three-dimensional distribution of current density for standard frequency bands, allowing voxelwise correlations between the EEG and PET data. Voxel-based morphometry analyses of structural magnetic resonance imaging (MRI) data were performed to assess potential structural abnormalities in melancholia. Melancholia was associated with reduced activity in the subgenual PFC (Brodmann area 25), manifested by increased inhibitory delta activity (1.5-6.0 Hz) and decreased glucose metabolism, which themselves were inversely correlated. Following antidepressant treatment, depressed subjects with the largest reductions in depression severity showed the lowest post-treatment subgenual PFC delta activity. Analyses of structural MRI revealed no group differences in the subgenual PFC, but in melancholic subjects, a negative correlation between gray matter density and age emerged. Based on preclinical evidence, we suggest that subgenual PFC dysfunction in melancholia may be associated with blunted hedonic response and exaggerated stress responsiveness.
Zotero Collections:

Developments in technologic and analytical procedures applied to the study of brain electrical activity have intensified interest in this modality as a means of examining brain function. The impact of these new developments on traditional methods of acquiring and analyzing electroencephalographic activity requires evaluation. Ultimately, the integration of the old with the new must result in an accepted standardized methodology to be used in these investigations. In this paper, basic procedures and recent developments involved in the recording and analysis of brain electrical activity are discussed and recommendations are made, with emphasis on psychophysiological applications of these procedures.
Zotero Collections:

PURPOSE: To systematically evaluate and quantify the effects of Tai Chi/Qigong (TCQ) on motor (UPDRS III, balance, falls, Timed-Up-and-Go, and 6-Minute Walk) and non-motor (depression and cognition) function, and quality of life (QOL) in patients with Parkinson's disease (PD).METHODS: A systematic search in 7 electronic databases targeted clinical studies evaluating TCQ for individuals with PD published through August 2016. Meta-analysis was used to estimate effect sizes (Hedges's g) and publication bias for randomized controlled trials (RCTs). Methodological bias in RCTs was assessed by two raters. RESULTS: Our search identified 21 studies, 15 of which were RCTs with a total of 735 subjects. For RCTs, comparison groups included no treatment (n = 7, 47%) and active interventions (n = 8, 53%). Duration of TCQ ranged from 2 to 6 months. Methodological bias was low in 6 studies, moderate in 7, and high in 2. Fixed-effect models showed that TCQ was associated with significant improvement on most motor outcomes (UPDRS III [ES = -0.444, p < 0.001], balance [ES = 0.544, p < 0.001], Timed-Up-and-Go [ES = -0.341, p = 0.005], 6 MW [ES = -0.293, p = 0.06], falls [ES = -0.403, p = 0.004], as well as depression [ES = -0.457, p = 0.008] and QOL [ES = -0.393, p < 0.001], but not cognition [ES = -0.225, p = 0.477]). I2 indicated limited heterogeneity. Funnel plots suggested some degree of publication bias. CONCLUSION: Evidence to date supports a potential benefit of TCQ for improving motor function, depression and QOL for individuals with PD, and validates the need for additional large-scale trials.