Skip to main content Skip to search
Displaying 1 - 3 of 3
This study investigated differences in brain activation during meditation between meditators and non-meditators. Fifteen Vipassana meditators (mean practice: 7.9 years, 2 h daily) and fifteen non-meditators, matched for sex, age, education, and handedness, participated in a block-design fMRI study that included mindfulness of breathing and mental arithmetic conditions. For the meditation condition (contrasted to arithmetic), meditators showed stronger activations in the rostral anterior cingulate cortex and the dorsal medial prefrontal cortex bilaterally, compared to controls. Greater rostral anterior cingulate cortex activation in meditators may reflect stronger processing of distracting events. The increased activation in the medial prefrontal cortex may reflect that meditators are stronger engaged in emotional processing.

Mindfulness meditators practice the non-judgmental observation of the ongoing stream of internal experiences as they arise. Using voxel-based morphometry, this study investigated MRI brain images of 20 mindfulness (Vipassana) meditators (mean practice 8.6 years; 2 h daily) and compared the regional gray matter concentration to that of non-meditators matched for sex, age, education and handedness. Meditators were predicted to show greater gray matter concentration in regions that are typically activated during meditation. Results confirmed greater gray matter concentration for meditators in the right anterior insula, which is involved in interoceptive awareness. This group difference presumably reflects the training of bodily awareness during mindfulness meditation. Furthermore, meditators had greater gray matter concentration in the left inferior temporal gyrus and right hippocampus. Both regions have previously been found to be involved in meditation. The mean value of gray matter concentration in the left inferior temporal gyrus was predictable by the amount of meditation training, corroborating the assumption of a causal impact of meditation training on gray matter concentration in this region. Results suggest that meditation practice is associated with structural differences in regions that are typically activated during meditation and in regions that are relevant for the task of meditation.

Pain can be modulated by several cognitive techniques, typically involving increased cognitive control and decreased sensory processing. Recently, it has been demonstrated that pain can also be attenuated by mindfulness. Here, we investigate the underlying brain mechanisms by which the state of mindfulness reduces pain. Mindfulness practitioners and controls received unpleasant electric stimuli in the functional magnetic resonance imaging scanner during a mindfulness and a control condition. Mindfulness practitioners, but not controls, were able to reduce pain unpleasantness by 22% and anticipatory anxiety by 29% during a mindful state. In the brain, this reduction was associated with decreased activation in the lateral prefrontal cortex and increased activation in the right posterior insula during stimulation and increased rostral anterior cingulate cortex activation during the anticipation of pain. These findings reveal a unique mechanism of pain modulation, comprising increased sensory processing and decreased cognitive control, and are in sharp contrast to established pain modulation mechanisms.