Skip to main content Skip to search
Displaying 1 - 14 of 14
Meditation can be conceptualized as a family of complex emotional and attentional regulatory training regimes developed for various ends, including the cultivation of well-being and emotional balance. Among these various practices, there are two styles that are commonly studied. One style, focused attention meditation, entails the voluntary focusing of attention on a chosen object. The other style, open monitoring meditation, involves nonreactive monitoring of the content of experience from moment to moment. The potential regulatory functions of these practices on attention and emotion processes could have a long-term impact on the brain and behavior.

Pseudoneglect is traditionally viewed as reflecting right hemisphere specialization for processing spatial information, resulting in orienting toward the contralateral, left, hemispace. Recent evidence suggests that healthy individuals differ from each other in both direction and magnitude of orienting bias, and moreover, the bias displayed by a person is consistent across time, suggesting that it may represent a trait of the individual. Animal studies reveal consistent orienting bias within an individual, which reflects asymmetry in dopaminergic brain systems. We measured basal D2-like receptor binding using positron emission tomography and the high-affinity ligand [F-18]fallypride, to test the hypothesis that asymmetry in dopaminergic neurotransmission in healthy humans modulates the orienting bias in humans. As predicted, we found that individual differences in the direction and magnitude of the orienting bias were strongly associated with the pattern of asymmetric binding of dopamine (DA) D2 receptors in the striatum, as well as clusters in the frontal and temporal cortex. These findings show for the first time that orienting bias reflects individual differences in the lateralization of DA systems in the healthy human brain.
Zotero Collections:

Muscle or electromyogenic (EMG) artifact poses a serious risk to inferential validity for any electroencephalography (EEG) investigation in the frequency-domain owing to its high amplitude, broad spectrum, and sensitivity to psychological processes of interest. Even weak EMG is detectable across the scalp in frequencies as low as the alpha band. Given these hazards, there is substantial interest in developing EMG correction tools. Unfortunately, most published techniques are subjected to only modest validation attempts, rendering their utility questionable. We review recent work by our laboratory quantitatively investigating the validity of two popular EMG correction techniques, one using the general linear model (GLM), the other using temporal independent component analysis (ICA). We show that intra-individual GLM-based methods represent a sensitive and specific tool for correcting on-going or induced, but not evoked (phase-locked) or source-localized, spectral changes. Preliminary work with ICA shows that it may not represent a panacea for EMG contamination, although further scrutiny is strongly warranted. We conclude by describing emerging methodological trends in this area that are likely to have substantial benefits for basic and applied EEG research.
Zotero Collections:

Most healthy individuals display a subtle spatial attentional bias, exhibiting relative inattention for stimuli on one side of the visual field, a phenomenon known as pseudoneglect. Prior work in animals and patients has implicated dopamine in spatial attention asymmetries. The current study therefore examined - in healthy individuals - the relationship between the attentional bias and spontaneous eye-blink rate (EBR), a putative measure of central dopaminergic function. We found that those individuals, who blinked more often under resting conditions, displayed greater preference for the right side of the visual display in a subsequent attention task. This finding may support the idea that the observed attentional bias in healthy individuals reflects asymmetries in dopaminergic circuits, and corroborates previous findings implicating dopamine in spatial attention.
Zotero Tags:
Zotero Collections:

It has been argued that emotion, pain, and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. But recent observations encourage a fundamentally different view. Imaging studies indicate that negative affect, pain, and cognitive control activate an overlapping region of dorsal cingulate, the anterior midcingulate cortex (aMCC). Anatomical studies reveal that aMCC constitutes a hub where information about reinforcers can be linked to motor centers responsible for expressing affect and executing goal-directed behavior. Computational modeling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of dorsal cingulate’s contribution to negative affect and pain.
Zotero Tags:
Zotero Collections:

Humans show consistent differences in the extent to which their behavior reflects a bias toward appetitive approach-related behavior or avoidance of aversive stimuli [Elliot, A. J. Approach and avoidance motivation. In A. J. Elliot (Ed.), Handbook of approach and avoidance motivation (pp. 3-14). New York: Psychology Press, 2008]. We examined the hypothesis that in healthy participants this motivational bias (assessed by self-report and by a probabilistic learning task that allows direct comparison of the relative sensitivity to reward and punishment) reflects lateralization of dopamine signaling. Using [F-18]fallypride to measure D2/D3 binding, we found that self-reported motivational bias was predicted by the asymmetry of frontal D2 binding. Similarly, striatal and frontal asymmetries in D2 dopamine receptor binding, rather than absolute binding levels, predicted individual differences in learning from reward versus punishment. These results suggest that normal variation in asymmetry of dopamine signaling may, in part, underlie human personality and cognition.
Zotero Tags:
Zotero Collections:

The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.

The capacity to stabilize the content of attention over time varies among individuals, and its impairment is a hallmark of several mental illnesses. Impairments in sustained attention in patients with attention disorders have been associated with increased trial-to-trial variability in reaction time and event-related potential deficits during attention tasks. At present, it is unclear whether the ability to sustain attention and its underlying brain circuitry are transformable through training. Here, we show, with dichotic listening task performance and electroencephalography, that training attention, as cultivated by meditation, can improve the ability to sustain attention. Three months of intensive meditation training reduced variability in attentional processing of target tones, as indicated by both enhanced theta-band phase consistency of oscillatory neural responses over anterior brain areas and reduced reaction time variability. Furthermore, those individuals who showed the greatest increase in neural response consistency showed the largest decrease in behavioral response variability. Notably, we also observed reduced variability in neural processing, in particular in low-frequency bands, regardless of whether the deviant tone was attended or unattended. Focused attention meditation may thus affect both distracter and target processing, perhaps by enhancing entrainment of neuronal oscillations to sensory input rhythms, a mechanism important for controlling the content of attention. These novel findings highlight the mechanisms underlying focused attention meditation and support the notion that mental training can significantly affect attention and brain function.
Zotero Collections:

Although the adult brain was once seen as a rather static organ, it is now clear that the organization of brain circuitry is constantly changing as a function of experience or learning. Yet, research also shows that learning is often specific to the trained stimuli and task, and does not improve performance on novel tasks, even very similar ones. This perspective examines the idea that systematic mental training, as cultivated by meditation, can induce learning that is not stimulus or task specific, but process specific. Many meditation practices are explicitly designed to enhance specific, well-defined core cognitive processes. We will argue that this focus on enhancing core cognitive processes, as well as several general characteristics of meditation regimens, may specifically foster process-specific learning. To this end, we first define meditation and discuss key findings from recent neuroimaging studies of meditation. We then identify several characteristics of specific meditation training regimes that may determine process-specific learning. These characteristics include ongoing variability in stimulus input, the meta-cognitive nature of the processes trained, task difficulty, the focus on maintaining an optimal level of arousal, and the duration of training. Lastly, we discuss the methodological challenges that researchers face when attempting to control or characterize the multiple factors that may underlie meditation training effects.

<p>Although the adult brain was once seen as a rather static organ, it is now clear that the organization of brain circuitry is constantly changing as a function of experience or learning. Yet, research also shows that learning is often specific to the trained stimuli and task, and does not improve performance on novel tasks, even very similar ones. This perspective examines the idea that systematic mental training, as cultivated by meditation, can induce learning that is not stimulus or task specific, but process specific. Many meditation practices are explicitly designed to enhance specific, well-defined core cognitive processes. We will argue that this focus on enhancing core cognitive processes, as well as several general characteristics of meditation regimens, may specifically foster process-specific learning. To this end, we first define meditation and discuss key findings from recent neuroimaging studies of meditation. We then identify several characteristics of specific meditation training regimes that may determine process-specific learning. These characteristics include ongoing variability in stimulus input, the meta-cognitive nature of the processes trained, task difficulty, the focus on maintaining an optimal level of arousal, and the duration of training. Lastly, we discuss the methodological challenges that researchers face when attempting to control or characterize the multiple factors that may underlie meditation training effects.</p>
Zotero Tags:
Zotero Collections:

Background The information processing capacity of the human mind is limited, as is evidenced by the attentional blink (AB) - a deficit in identifying the second of two temporally-close targets (T1 and T2) embedded in a rapid stream of distracters. Theories of the AB generally agree that it results from competition between stimuli for conscious representation. However, they disagree in the specific mechanisms, in particular about how attentional processing of T1 determines the AB to T2. Methodology/Principal Findings The present study used the high spatial resolution of functional magnetic resonance imaging (fMRI) to examine the neural mechanisms underlying the AB. Our research approach was to design T1 and T2 stimuli that activate distinguishable brain areas involved in visual categorization and representation. ROI and functional connectivity analyses were then used to examine how attentional processing of T1, as indexed by activity in the T1 representation area, affected T2 processing. Our main finding was that attentional processing of T1 at the level of the visual cortex predicted T2 detection rates Those individuals who activated the T1 encoding area more strongly in blink versus no-blink trials generally detected T2 on a lower percentage of trials. The coupling of activity between T1 and T2 representation areas did not vary as a function of conscious T2 perception. Conclusions/Significance These data are consistent with the notion that the AB is related to attentional demands of T1 for selection, and indicate that these demands are reflected at the level of visual cortex. They also highlight the importance of individual differences in attentional settings in explaining AB task performance.
Zotero Tags:
Zotero Collections:

Our outside world changes continuously, for example, when driving through traffic. An important question is how our brain deals with this constant barrage of rapidly changing sensory input and flexibly selects only newly goal-relevant information for further capacity-limited processing in working memory. The challenge our brain faces is experimentally captured by the attentional blink (AB): an impairment in detecting the second of two target stimuli presented in close temporal proximity among distracters. Many theories have been proposed to explain this deficit in processing goal-relevant information, with some attributing the AB to capacity limitations related to encoding of the first target and others assigning a critical role to on-line selection mechanisms that control access to working memory. The current study examined the role of striatal dopamine in the AB, given its known role in regulating the contents of working memory. Specifically, participants performed an AB task and their basal level of dopamine D2-like receptor binding was measured using PET and [F-18]fallypride. As predicted, individual differences analyses showed that greater D2-like receptor binding in the striatum was associated with a larger AB, implicating striatal dopamine and mechanisms that control access to working memory in the AB. Specifically, we propose that striatal dopamine may determine the AB by regulating the threshold for working memory updating, providing a testable physiological basis for this deficit in gating rapidly changing visual information. A challenge for current models of the AB lies in connecting more directly to these neurobiological data.
Zotero Collections:

The information processing capacity of the human mind is limited, as is evidenced by the attentional blink—a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information.

The information processing capacity of the human mind is limited, as is evidenced by the attentional blink-a deficit in identifying the second of two targets (T1 and T2) presented in close succession. This deficit is thought to result from an overinvestment of limited resources in T1 processing. We previously reported that intensive mental training in a style of meditation aimed at reducing elaborate object processing, reduced brain resource allocation to T1, and improved T2 accuracy [Slagter, H. A., Lutz, A., Greischar, L. L., Francis, A. D., Nieuwenhuis, S., Davis, J., et al. Mental training affects distribution of limited brain resources. PloS Biology, 5, e138, 2007]. Here we report EEG spectral analyses to examine the possibility that this reduction in elaborate T1 processing rendered the system more available to process new target information, as indexed by T2-locked phase variability. Intensive mental training was associated with decreased cross-trial variability in the phase of oscillatory theta activity after successfully detected T2s, in particular, for those individuals who showed the greatest reduction in brain resource allocation to T1. These data implicate theta phase locking in conscious target perception, and suggest that after mental training the cognitive system is more rapidly available to process new target information. Mental training was not associated with changes in the amplitude of T2-induced responses or oscillatory activity before task onset. In combination, these findings illustrate the usefulness of systematic mental training in the study of the human mind by revealing the neural mechanisms that enable the brain to successfully represent target information.
Zotero Collections: