Displaying 1 - 11 of 11
Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease < attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.
Zotero Collections:
The phobic fear response appears to resemble an intense form of normal threat responding that can be induced in a nonthreatening situation. However, normative and phobic fear are rarely contrasted directly, thus the degree to which these two types of fear elicit similar neural and bodily responses is not well understood. To examine biological correlates of normal and phobic fear, 21 snake phobic and 21 nonphobic controls saw videos of slithering snakes, attacking snakes and fish in an event-related fMRI design. Simultaneous eletrodermal, pupillary, and self-reported affective responses were collected. Nonphobic fear activated a network of threat-responsive brain regions and involved pupillary dilation, electrodermal response and self-reported affect selective to the attacking snakes. Phobic fear recruited a large array of brain regions including those active in normal fear plus additional structures and also engendered increased pupil dilation, electrodermal and self-reported responses that were greater to any snake versus fish. Importantly, phobics showed greater between- and within-subject concordance among neural, electrodermal, pupillary, and subjective report measures. These results suggest phobic responses recruit overlapping but more strongly activated and more extensive networks of brain activity as compared to normative fear, and are characterized by greater concordance among neural activation, peripheral physiology and self-report. It is yet unclear whether concordance is unique to psychopathology, or rather simply an indicator of the intense fear seen in the phobic response, but these results underscore the importance of synchrony between brain, body, and cognition during the phobic reaction.
Zotero Collections:
BACKGROUND: Relationships between aberrant social functioning and depression have been explored via behavioral, clinical, and survey methodologies, highlighting their importance in the etiology of depression. The neural underpinnings of these relationships, however, have not been explored.
METHODS: Nine depressed participants and 14 never-depressed control subjects viewed emotional and neutral pictures at two functional magnetic resonance imaging (fMRI) scanning sessions approximately 22 weeks apart. In the interim, depressed patients received the antidepressant Venlafaxine. Positively rated images were parsed into three separate comparisons: social interaction, human faces, and sexual images; across scanning session, activation to these images was compared with other positively rated images.
RESULTS: For each of the three social stimulus types (social interaction, faces, sexual images), a distinguishable circuitry was activated equally in non-depressed control subjects and post-treatment depressed subjects but showed a hypo-response in the depressed group pre-treatment. These structures include regions of prefrontal, temporal, and parietal cortices, insula, basal ganglia, and the hippocampus.
CONCLUSIONS: The neural hypo-response to positively valenced social stimuli that is observed in depression remits as response to antidepressant medication occurs, suggesting a state-dependent deficiency in response to positive social incentives. These findings underscore the importance of addressing social dysfunction in research and treatment of depression.
Zotero Collections:
BACKGROUND: Two core characteristics of pathologic fear are its rapid onset and resistance to cognitive regulation. We hypothesized that activation of the amygdala early in the presentation of fear-relevant visual stimuli would distinguish phobics from nonphobics.
METHODS: Chronometry of amygdala activation to phobia-relevant pictures was assessed in 13 spider phobics and 14 nonphobics using functional magnetic resonance imaging (fMRI).
RESULTS: Blood oxygen level-dependent (BOLD) responses in the amygdala early in picture processing consistently differentiated between phobic and nonphobic subjects, as well as between phobogenic and nonphobogenic stimuli among phobics. Furthermore, amygdalar BOLD responses associated with timing but not magnitude of activation predicted affective responses to phobogenic stimuli. Computational modeling procedures were used to identify patterns of neural activation in the amygdala that could yield the observed BOLD data. These data suggest that phobic responses were characterized by strong but brief amygdala responses, whereas nonphobic responses were weaker and more sustained.
CONCLUSIONS: Results are discussed in the context of the amygdala's role in rapid threat detection and the vigilance-avoidance hypothesis of anxiety. These data highlight the importance of examining the neural substrates of the immediate impact of phobogenic stimuli for understanding pathological fear.
Zotero Collections:
Previous research indicates that drug motivational systems are instantiated in structures that process information related to incentive, motivational drive, memorial, motor/habit, craving, and cognitive control processing. The present research tests the hypothesis that activity in such systems will be powerfully affected by the combination of drug anticipation and drug withdrawal. Event-related fMRI was used to examine activation in response to a preinfusion warning cue in two experimental sessions that manipulated withdrawal status. Significant cue-induced effects were seen in the caudate, ventral anterior nucleus of the thalamus, the insula, subcallosal gyrus, nucleus accumbens, and anterior cingulate. These results suggest that withdrawal and nicotine anticipation produce (1) different motor preparatory and inhibitory response processing and (2) different craving related processing.
Zotero Collections:
The capacity to anticipate aversive circumstances is central not only to successful adaptation but also to understanding the abnormalities that contribute to excessive worry and anxiety disorders. Forecasting and reacting to aversive events mobilize a host of affective and cognitive capacities and corresponding brain processes. Rapid event-related functional magnetic resonance imaging (fMRI) in 21 healthy volunteers assessed the overlap and divergence in the neural instantiation of anticipating and being exposed to aversive pictures. Brain areas jointly activated by the anticipation of and exposure to aversive pictures included the dorsal amygdala, anterior insula, dorsal anterior cingulate cortex (ACC), right dorsolateral prefrontal cortex (DLPFC), and right posterior orbitofrontal cortex (OFC). Anticipatory processes were uniquely associated with activations in rostral ACC, a more superior sector of the right DLPFC, and more medial sectors of the bilateral OFC. Activation of the right DLPFC in anticipation of aversion was associated with self-reports of increased negative affect, whereas OFC activation was associated with increases in both positive and negative affect. These results show that anticipation of aversion recruits key brain regions that respond to aversion, thereby potentially enhancing adaptive responses to aversive events.
Zotero Collections:
Diminished gaze fixation is one of the core features of autism and has been proposed to be associated with abnormalities in the neural circuitry of affect. We tested this hypothesis in two separate studies using eye tracking while measuring functional brain activity during facial discrimination tasks in individuals with autism and in typically developing individuals. Activation in the fusiform gyrus and amygdala was strongly and positively correlated with the time spent fixating the eyes in the autistic group in both studies, suggesting that diminished gaze fixation may account for the fusiform hypoactivation to faces commonly reported in autism. In addition, variation in eye fixation within autistic individuals was strongly and positively associated with amygdala activation across both studies, suggesting a heightened emotional response associated with gaze fixation in autism.
Zotero Collections:
Recent studies have identified a distributed network of brain regions thought to support cognitive reappraisal processes underlying emotion regulation in response to affective images, including parieto-temporal regions and lateral/medial regions of prefrontal cortex (PFC). A number of these commonly activated regions are also known to underlie visuospatial attention and oculomotor control, which raises the possibility that people use attentional redeployment rather than, or in addition to, reappraisal as a strategy to regulate emotion. We predicted that a significant portion of the observed variance in brain activation during emotion regulation tasks would be associated with differences in how participants visually scan the images while regulating their emotions. We recorded brain activation using fMRI and quantified patterns of gaze fixation while participants increased or decreased their affective response to a set of affective images. fMRI results replicated previous findings on emotion regulation with regulation differences reflected in regions of PFC and the amygdala. In addition, our gaze fixation data revealed that when regulating, individuals changed their gaze patterns relative to a control condition. Furthermore, this variation in gaze fixation accounted for substantial amounts of variance in brain activation. These data point to the importance of controlling for gaze fixation in studies of emotion regulation that use visual stimuli.
Zotero Collections:
Using functional magnetic resonance imaging, we examined whether individual differences in amygdala activation in response to negative relative to neutral information are related to differences in the speed with which such information is evaluated, the extent to which such differences are associated with medial prefrontal cortex function, and their relationship with measures of trait anxiety and psychological well-being (PWB). Results indicated that faster judgments of negative relative to neutral information were associated with increased left and right amygdala activation. In the prefrontal cortex, faster judgment time was associated with relative decreased activation in a cluster in the ventral anterior cingulate cortex (ACC, BA 24). Furthermore, people who were slower to evaluate negative versus neutral information reported higher PWB. Importantly, higher PWB was strongly associated with increased activation in the ventral ACC for negative relative to neutral information. Individual differences in trait anxiety did not predict variation in judgment time or in amygdala or ventral ACC activity. These findings suggest that people high in PWB effectively recruit the ventral ACC when confronted with potentially aversive stimuli, manifest reduced activity in subcortical regions such as the amygdala, and appraise such information as less salient as reflected in slower evaluative speed.
Zotero Collections:
Social contact promotes enhanced health and well-being, likely as a function of the social regulation of emotional responding in the face of various life stressors. For this functional magnetic resonance imaging (fMRI) study, 16 married women were subjected to the threat of electric shock while holding their husband's hand, the hand of an anonymous male experimenter, or no hand at all. Results indicated a pervasive attenuation of activation in the neural systems supporting emotional and behavioral threat responses when the women held their husband's hand. A more limited attenuation of activation in these systems occurred when they held the hand of a stranger. Most strikingly, the effects of spousal hand-holding on neural threat responses varied as a function of marital quality, with higher marital quality predicting less threat-related neural activation in the right anterior insula, superior frontal gyrus, and hypothalamus during spousal, but not stranger, hand-holding.
Zotero Collections:
<p>Recent studies have shown that the presence of a caring relational partner can attenuate neural responses to threat. Here we report reanalyzed data from Coan, Schaefer, and Davidson ( 2006 ), investigating the role of relational mutuality in the neural response to threat. Mutuality reflects the degree to which couple members show mutual interest in the sharing of internal feelings, thoughts, aspirations, and joys - a vital form of responsiveness in attachment relationships. We predicted that wives who were high (versus low) in perceived mutuality, and who attended the study session with their husbands, would show reduced neural threat reactivity in response to mild electric shocks. We also explored whether this effect would depend on physical contact (hand-holding). As predicted, we observed that higher mutuality scores corresponded with decreased neural threat responding in the right dorsolateral prefrontal cortex and supplementary motor cortex. These effects were independent of hand-holding condition. These findings suggest that higher perceived mutuality corresponds with decreased self-regulatory effort and attenuated preparatory motor activity in response to threat cues, even in the absence of direct physical contact with social resources.</p>
Zotero Collections: