Displaying 1 - 2 of 2
Patient–physician interactions significantly contribute to placebo effects and clinical outcomes. While the neural correlates of placebo responses have been studied in patients, the neurobiology of the clinician during treatment is unknown. This study investigated physicians’ brain activations during patient–physician interaction while the patient was experiencing pain, including a ‘treatment‘, ‘no-treatment’ and ‘control’ condition. Here, we demonstrate that physicians activated brain regions previously implicated in expectancy for pain–relief and increased attention during treatment of patients, including the right ventrolateral and dorsolateral prefrontal cortices. The physician’s ability to take the patients’ perspective correlated with increased brain activations in the rostral anterior cingulate cortex, a region that has been associated with processing of reward and subjective value. We suggest that physician treatment involves neural representations of treatment expectation, reward processing and empathy, paired with increased activation in attention-related structures. Our findings further the understanding of the neural representations associated with reciprocal interactions between clinicians and patients; a hallmark for successful treatment outcomes.
Zotero Collections:
Cognitive control is defined by a set of neural processes that allow us to interact with our complex environment in a goal-directed manner. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (multitasking), generating interference as the result of fundamental information processing limitations. It is clear that multitasking behaviour has become ubiquitous in today's technologically dense world, and substantial evidence has accrued regarding multitasking difficulties and cognitive control deficits in our ageing population. Here we show that multitasking performance, as assessed with a custom-designed three-dimensional video game (NeuroRacer), exhibits a linear age-related decline from 20 to 79 years of age. By playing an adaptive version of NeuroRacer in multitasking training mode, older adults (60 to 85 years old) reduced multitasking costs compared to both an active control group and a no-contact control group, attaining levels beyond those achieved by untrained 20-year-old participants, with gains persisting for 6 months. Furthermore, age-related deficits in neural signatures of cognitive control, as measured with electroencephalography, were remediated by multitasking training (enhanced midline frontal theta power and frontal-posterior theta coherence). Critically, this training resulted in performance benefits that extended to untrained cognitive control abilities (enhanced sustained attention and working memory), with an increase in midline frontal theta power predicting the training-induced boost in sustained attention and preservation of multitasking improvement 6 months later. These findings highlight the robust plasticity of the prefrontal cognitive control system in the ageing brain, and provide the first evidence, to our knowledge, of how a custom-designed video game can be used to assess cognitive abilities across the lifespan, evaluate underlying neural mechanisms, and serve as a powerful tool for cognitive enhancement.