Displaying 1 - 11 of 11
On the basis of a review of the extant literature describing emotion-cognition interactions, the authors propose 4 methodological desiderata for studying how task-irrelevant affect modulates cognition and present data from an experiment satisfying them. Consistent with accounts of the hemispheric asymmetries characterizing withdrawal-related negative affect and visuospatial working memory (WM) in prefrontal and parietal cortices, threat-induced anxiety selectively disrupted accuracy of spatial but not verbal WM performance. Furthermore, individual differences in physiological measures of anxiety statistically mediated the degree of disruption. A second experiment revealed that individuals characterized by high levels of behavioral inhibition exhibited more intense anxiety and relatively worse spatial WM performance in the absence of threat, solidifying the authors' inference that anxiety causally mediates disruption. These observations suggest a revision of extant models of how anxiety sculpts cognition and underscore the utility of the desiderata.
Zotero Collections:
Research on the neural substrates of emotion has found evidence for cortical asymmetries for aspects of emotion. A recent article by Nicholls et al. has used a new imaging method to interrogate facial movement in 3D to assess possible asymmetrical action during expressions of happiness and sadness. Greater left-sided movement, particularly during expressions of sadness was observed. These findings have implications for understanding hemispheric differences in emotion and lend support to the notion that aspects of emotion processing might be differentially localized in the two hemispheres.
Zotero Collections:
Muscle or electromyogenic (EMG) artifact poses a serious risk to inferential validity for any electroencephalography (EEG) investigation in the frequency-domain owing to its high amplitude, broad spectrum, and sensitivity to psychological processes of interest. Even weak EMG is detectable across the scalp in frequencies as low as the alpha band. Given these hazards, there is substantial interest in developing EMG correction tools. Unfortunately, most published techniques are subjected to only modest validation attempts, rendering their utility questionable. We review recent work by our laboratory quantitatively investigating the validity of two popular EMG correction techniques, one using the general linear model (GLM), the other using temporal independent component analysis (ICA). We show that intra-individual GLM-based methods represent a sensitive and specific tool for correcting on-going or induced, but not evoked (phase-locked) or source-localized, spectral changes. Preliminary work with ICA shows that it may not represent a panacea for EMG contamination, although further scrutiny is strongly warranted. We conclude by describing emerging methodological trends in this area that are likely to have substantial benefits for basic and applied EEG research.
Zotero Collections:
To emote literally means to move or prepare for action. A large body of research indicates that flexor and extensor movements are conditionally associated with approach- and avoidance-related motivations. It has also been widely argued that approach and avoidant motivations are asymmetrically instantiated in the left and right hemispheres, respectively. Nevertheless, to date, these literatures remain largely separate. In the present investigation, flexor and extensor movements that were visuospatially contextualized as being directed toward the self and away from the self were observed to be asymmetrically represented in the "approach" and "avoidance" hemispheres. Moreover, this pattern of hemispheric specialization was manifested to a greater degree the higher participants' self-reported level of daily positive affect and the lower their self-reported level of dispositional anxiety. Collectively, these findings have direct implications for models of embodied emotional and perceptual processing, as well as for investigations of individual differences in emotional disposition.
Zotero Collections:
Recent years have seen an explosion of interest in using neural oscillations to characterize the mechanisms supporting cognition and emotion. Oftentimes, oscillatory activity is indexed by mean power density in predefined frequency bands. Some investigators use broad bands originally defined by prominent surface features of the spectrum. Others rely on narrower bands originally defined by spectral factor analysis (SFA). Presently, the robustness and sensitivity of these competing band definitions remains unclear. Here, a Monte Carlo-based SFA strategy was used to decompose the tonic ("resting" or "spontaneous") electroencephalogram (EEG) into five bands: delta (1-5Hz), alpha-low (6-9Hz), alpha-high (10-11Hz), beta (12-19Hz), and gamma (>21Hz). This pattern was consistent across SFA methods, artifact correction/rejection procedures, scalp regions, and samples. Subsequent analyses revealed that SFA failed to deliver enhanced sensitivity; narrow alpha sub-bands proved no more sensitive than the classical broadband to individual differences in temperament or mean differences in task-induced activation. Other analyses suggested that residual ocular and muscular artifact was the dominant source of activity during quiescence in the delta and gamma bands. This was observed following threshold-based artifact rejection or independent component analysis (ICA)-based artifact correction, indicating that such procedures do not necessarily confer adequate protection. Collectively, these findings highlight the limitations of several commonly used EEG procedures and underscore the necessity of routinely performing exploratory data analyses, particularly data visualization, prior to hypothesis testing. They also suggest the potential benefits of using techniques other than SFA for interrogating high-dimensional EEG datasets in the frequency or time-frequency (event-related spectral perturbation, event-related synchronization/desynchronization) domains.
Zotero Collections:
Individuals show marked variation in their responses to threat. Such individual differences in “behavioral inhibition” (BI) play a profound role in mental and physical wellbeing. BI is thought to reflect variation in the sensitivity of a distributed neural system responsible for generating anxiety and organizing defensive responses in response to threat and punishment. Although progress has been made in identifying the key constituents of this behavioral inhibition system (BIS) in humans, the involvement of dorsolateral prefrontal cortex (dlPFC) remains unclear. Here, we acquired self-reported BIS-sensitivity and high-density EEG from a large sample (n=51). Using the enhanced spatial resolution afforded by source modeling techniques, we show that individuals with greater tonic activity in right posterior dlPFC rate themselves as more behaviorally inhibited. This observation provides novel support for recent conceptualizations of BI and clues to the mechanisms that might underlie variation in threat-induced negative affect.
Zotero Collections:
Stress can fundamentally alter neural responses to incoming information. Recent research suggests that stress and anxiety shift the balance of attention away from a task-directed mode, governed by prefrontal cortex (PFC), to a sensory-vigilance mode, governed by the amygdala and other threat-sensitive regions. A key untested prediction of this framework is that stress exerts dissociable effects on different stages of information processing. This study exploited the temporal resolution afforded by event-related potentials to disentangle the impact of stress on vigilance, indexed by early perceptual activity, from its impact on task-directed cognition, indexed by later post-perceptual activity in humans. Results indicated that threat-of-shock amplified stress, measured using retrospective ratings and concurrent facial electromyography (EMG). Stress also double-dissociated early sensory-specific from the later task-directed processing of emotionally-neutral stimuli: stress amplified N1 (184-236 ms) and attenuated P3 (316-488 ms) activity. This demonstrates that stress can have strikingly different consequences at different processing stages. Consistent with recent suggestions, stress amplified earlier extrastriate activity in a manner consistent with vigilance for threat (N1), but disrupted later activity associated with the evaluation of task-relevant information (P3). These results provide a novel basis for understanding how stress can modulate information processing in everyday life and stress-sensitive disorders.
Zotero Collections:
Planned and reflexive behaviors often occur in the presence of emotional stimuli and within the context of an individual's acute emotional state. Therefore, determining the manner in which emotion and attention interact is an important step toward understanding how we function in the real world. Participants in the current investigation viewed centrally displayed, task-irrelevant, face distractors (angry, neutral, happy) while performing a lateralized go/no-go continuous performance task. Lateralized go targets and no-go lures that did not spatially overlap with the faces were employed to differentially probe processing in the left (LH) and right (RH) cerebral hemispheres. There was a significant interaction between expression and hemisphere, with an overall pattern such that angry distractors were associated with relatively more RH inhibitory errors than neutral or happy distractors and happy distractors with relatively more LH inhibitory errors than angry or neutral distractors. Simple effects analyses confirmed that angry faces differentially interfered with RH relative to LH inhibition and with inhibition in the RH relative to happy faces. A significant three-way interaction further revealed that state anxiety moderated relations between emotional expression and hemisphere. Under conditions of low cognitive load, more intense anxiety was associated with relatively greater RH than LH impairment in the presence of both happy and threatening distractors. By contrast, under high load, only angry distractors produced greater RH than LH interference as a function of anxiety.
Zotero Collections:
Muscle electrical activity, or "electromyogenic" (EMG) artifact, poses a serious threat to the validity of electroencephalography (EEG) investigations in the frequency domain. EMG is sensitive to a variety of psychological processes and can mask genuine effects or masquerade as legitimate neurogenic effects across the scalp in frequencies at least as low as the alpha band (8-13 Hz). Although several techniques for correcting myogenic activity have been described, most are subjected to only limited validation attempts. Attempts to gauge the impact of EMG correction on intracerebral source models (source "localization" analyses) are rarer still. Accordingly, we assessed the sensitivity and specificity of one prominent correction tool, independent component analysis (ICA), on the scalp and in the source-space using high-resolution EEG. Data were collected from 17 participants while neurogenic and myogenic activity was independently varied. Several protocols for classifying and discarding components classified as myogenic and non-myogenic artifact (e.g., ocular) were systematically assessed, leading to the exclusion of one-third to as much as three-quarters of the variance in the EEG. Some, but not all, of these protocols showed adequate performance on the scalp. Indeed, performance was superior to previously validated regression-based techniques. Nevertheless, ICA-based EMG correction exhibited low validity in the intracerebral source-space, likely owing to incomplete separation of neurogenic from myogenic sources. Taken with prior work, this indicates that EMG artifact can substantially distort estimates of intracerebral spectral activity. Neither regression- nor ICA-based EMG correction techniques provide complete safeguards against such distortions. In light of these results, several practical suggestions and recommendations are made for intelligently using ICA to minimize EMG and other common artifacts.
Zotero Collections:
EEG and EEG source-estimation are susceptible to electromyographic artifacts (EMG) generated by the cranial muscles. EMG can mask genuine effects or masquerade as a legitimate effect-even in low frequencies, such as alpha (8-13 Hz). Although regression-based correction has been used previously, only cursory attempts at validation exist, and the utility for source-localized data is unknown. To address this, EEG was recorded from 17 participants while neurogenic and myogenic activity were factorially varied. We assessed the sensitivity and specificity of four regression-based techniques: between-subjects, between-subjects using difference-scores, within-subjects condition-wise, and within-subject epoch-wise on the scalp and in data modeled using the LORETA algorithm. Although within-subject epoch-wise showed superior performance on the scalp, no technique succeeded in the source-space. Aside from validating the novel epoch-wise methods on the scalp, we highlight methods requiring further development.
Zotero Collections: